w
LLl
o
Ll
w
Q
o
=
<
t
=
Q
()
()
=z
<
Q
w2
=)
=
[
Ll
=
=
o
=
(©)
O
L
€L
frs

VOLUME 12

vy
i)

imen

€Exper

Musical

iN
Intell

igence

e

T

e

DAVID (OPFCE

THE COMPUTER MUSIC AND DIGITAL AUDIO SERIES
John Strawn, Founding Editor
Christopher Yavelow, Series Editor

DIGITAL AUDIO SIGNAL PROCESSING
Edited by John Strawn

COMPOSERS AND THE COMPUTER
Edited by Curtis Roads

DIGITAL AUDIO ENGINEERING
Edited by John Strawn

COMPUTER APPLICATIONS IN MUSIC: A BIBLIOGRAPHY
Deta S. Davis

THE COMPACT DISC HANDBOOK
Ken C. Pohimann

COMPUTERS AND MUSICAL STYLE
David Cope

MIDI: A COMPREHENSIVE INTRODUCTION
Joseph Rothstein
William Eldridge, Volume Editor

SYNTHESIZER PERFORMANCE AND REAL-TIME TECHNIQUES
Jeff Pressing
Chris Meyer, Volume Editor

MUSIC PROCESSING
Edited by Goffredo Haus

COMPUTER APPLICATIONS IN MUSIC:
A BIBLIOGRAPHY, SUPPLEMENT {
Deta S. Davis
Garrett Bowles, Volume Editor

GENERAL MIDI
Stanley Jungleib

EXPERIMENTS IN MUSICAL INTELLIGENCE
David Cope

Volume 12 ¢ THE COMPUTER MUSIC AND DIGITAL AUDIO SERIES

AT
'Y A
Y 7
X7

EXPERIMENTS IN MUSICAL INTELUGENCE

David Cope

?
‘l A-R Editions, Inc.

Madison, Wisconsin

Library of Congress Cataloging-in-Publication Data

Cope, David.

Experiments in musical intelligence / David Cope.

p. cm. — (The computer music and digital audio series ; w.
12)

Includes bibliographical references and index.

“The accompanying CD-ROM and its contents require an Apple
Macintosh computer that runs system 7.0 or later with at least four
megabytes (eight or more megabytes suggested) of RAM. The code
requires Apple Computer’s Macintosh Common LISP software and MIDI
Manager”—p.

ISBN 0-89579-314-8

1. Composition (Music) —Computer programs. 2. Cope, David. EML

I. Cope, David. SARA. II. Title. HI. Series.
MT56.C67 1995

781.3'453—dc20 95-6042
CIP

MN

A-R Editions, Inc., Madison, Wisconsin 53717-1903
© 1996 by AR Editions, Inc.

All rights reserved.

Printed in the United States of America.

10987654321

Co‘ntents

Preface
Description of CD-ROM xi

B Chapter One Background and Overview
Challenges 23
General Algorithm 25
Approaches to Analysis 27
Approaches to Pattern Matching 33
Augmented Transition Networks 40

B Chapter Two The Analysis Component
Databases 54
Analytical Techniques 64
Analysis Program 73

B Chapter Three The Pattern-Matching Component

Testing the Signature Theory 81
Pattern-Matching Techniques 83
Pattern-Matching Program 118

B Chapter Four The Object System
Object Orientation 124
Classes and Superclasses 131

Vii

53

79

123

vi EXPERIMENTS IN MUSICAL INTELLIGENCE

Slots 131
Methods 139
Object Program 140

B Chapter Five The ATN Component
ATN Basics in LISP 154
ATN Basics in Music 162
ATN Program 183

B Chapter Six An Application-Level Program
and Sample Output
Putting It All Together 189
Application-Level Program 193
Interface 196
Variations 199
Sample Output and Extensions 201

B Chapter Seven Conclusions and the Future
Expanding the Parameters 218
Beyond MIDI 234
Conclusions 236
The Future 244

Bibliography

Index

151

189

217

251
257

[. _A

Preface

[began Experiments in Musical Intelligence (EMI) in the early 1980s
as the result of a composing block (Cope 1988). Issues of musical
style surfaced immediately as it became clear that I wanted to cre-
ate programs that could produce music in my style. Using musical
recombinancy, pattern matching, augmented transition networks
(ATNs), and object orientation, the EMI program eventually created
new examples of music in, arguably, the styles of classical com-
posers such as Mozart and Bach as well as the more contemporary
Cope.

As a result of this research, I completed my book Computers and
Musical Style (1991a), which presents a history of automated music
(chapter 1), relationships between music and language (chapter 2),
an introduction to the computer language LISP (chapter 3), a small
composing program (chapter 4), examples of the output of EMI
(chapter 5), and a look at the future of musical automata via inter-
active composition (chapter 6). Although seemingly all-inclusive,
Computers and Musical Style does leave out important material:

The functions presented in Chapter 4 did not create the EMI inventions
shown at the beginning of this chapter. They did, however, present
enough of the theory and principles for readers to extend the code and
compose similar works. The music that follows requires a more substan-
tial leap of faith. The functions responsible for its creation are far too elab-
orate and lengthy to present here in their entirety. (Cope 1991a, p. 147)

Experiments in Musical Intelligence is intended to address this
required leap of faith and present the code for more elaborate repli-
cations. Those familiar with Computers and Musical Style will be able

vii

Viii

EXPERIMENTS IN MUSICAL INTELLIGENCE

to continue developing LISP skills begun with that book. They will
also be able to observe the basic principles introduced in Computers
and Musical Style that are elaborated on and extended in the present
book. Readers unfamiliar with Computers and Musical Style should
read that volume, although such referencing is not absolutely neces-
sary for reading Experiments in Musical Intelligence.

Chapter 1 of this book describes the computational problems
posed for creating music in the styles of encoded music. This chap-
ter includes a number of important historical precedents for algo-
rithmic composition, including Musikalisches Wiirfelspiel (a “musical
dice game™) and other less formal examples, and provides a basic
overview of EMI through example algorithms, giving the reader a
broader sense of the program and its various components. Chapter
2 covers the ways in which EMI stores and accesses data, including
details on the EMI database format, the weightings used for har-
monic analysis, and the principles of clarification. This chapter also
covers the basic techniques for melodic, harmonic, and structural
analysis. Chapter 3 presents basic pattern-matching principles, the
use of global variables (controllers) in the matching process, and
the techniques of pitch and interval matching. It also describes how
pattern matching more than one work can lead to signature recog-
nition and culminates with a sample pattern-matching session, in
which a Mozart signature is revealed.

Chapter 4 acquaints the reader with the basic principles of object
orientation and the advantages of using such approaches. The Com-
mon LISP Object System (CLOS) as outlined by Steele (1990), is
broadly described in this section. The nature of classes and super-
classes, instances, and inheritance are discussed. This chapter also
discusses the concepts of standard and user-created methods and
why the EMI approach follows the CLOS standard. Chapter 5 presents
natural language processing (NLP) finite state, recursive, and aug-
mented transition network (ATN) musical examples. It also describes
the symbiotic relationship between objects and ATN in EMI and ATN
information stored in slots in objects that can then be musically
recombined. Finally, it describes linear and nonlinear transition net-
work subtypes as well as the techniques of micro-ATN (MATN).

Chapter 6 outlines how the various programs (analysis, pattern
matching, objects, and ATN) combine at the application level to pro-
duce large, robust programs in EMI This chapter also covers the
techniques that EMI uses for such components as counterpoint,
form, and melodic variations. Chapter 7 discusses program expan-
sions—including dynamics, articulations, timbre, tempo, and non-
pitch/duration pattern matching for stylistic signatures—and self-

PREFACE ix

referencing program techniques, and non-MIDI output. It presents
examples from an EMI opera based on texts by Mozart as well as
examples from a collection of five thousand machine-composed
works. This chapter also discusses the prospects for algorithmic
composition in the future.

Although EMI is the subject of this book, most of the code pre-
sented here and on the accompanying CD-ROM is a subset of EMI
called SARA (Simple Analytic Recombinancy Algorithm). EMI and
SARA have many things in common, but they also differ in many
ways. | have attempted, whenever possible, to distinguish these dif-
ferences and to articulate their similarities. In chapter 3, for example,
there are separate subsections on EMI and SARA pattern-matching
controllers. Also, the musical examples throughout the book clearly
differentiate between EMI and SARA output. In contrast, the sections
on analysis (chapter 2), object orientation (chapter 4), and ATNs
(chapter 5) underscore the similarities between EMI and SARA.

The code of SARA presented in this book and on the accompany-
ing CD-ROM will produce output in the form shown in many of the
examples. Both source and object code for SARA are included on
this CD-ROM, as are fast-loading (.fasl) database files. The CD-ROM
contains manuals in a variety of formats for operating and under-
standing this code. Thus, you may rewrite or add to the code to ful-
fill more specialized needs. Musicologists may require only pattern
matching in attempting, for example, to verify the authenticity of
musical signatures. Composers might want a more interactive top
level. Analysts may be interested only in those aspects of the pro-
gram that could corroborate certain functional or hierarchical mod-
els of analysis.

The accompanying CD-ROM also contains a number of useful
adjunct programs. The program Wiirfelspiel contains Musikalisches
Wiirfelspiel by a number of eighteenth-century composers including
Johann Philipp Kirnberger, Carl Philipp Emanuel Bach, Wolfgang
Amadeus Mozart, Joseph Haydn, and others discussed in chapter 1
of this book. The Is It Mozart program was demonstrated at the
American Association of Artificial Intelligence (AAAI) conference in
San Jose, California, in the summer of 1992. Hypercard versions of
Is It Mozart as well as Chopin and Bach Chorales, both of which
involve recombinance in a non-LISP environment, are also included.
All these programs demonstrate aspects of the EMI program, and
compositions are playable through the Macintosh speakers using
sampled piano sounds. I have included the code contained in Com-
puters and Musical Style as well as that code from a number of my
published articles about EMI on the CD-ROM.

EXPERIMENTS IN MUSICAL INTELLIGENCE

The accompanying CD-ROM requires an Apple Macintosh com-
puter running system 7.0 or later with at least four megabytes (eight
or more megabytes suggested) of RAM. The code requires Apple
Computer’s Macintosh Common LISP software and MIDI Manager.
Many of the programs (especially SARA) also require a MIDI inter-
face, a sampler, proper cables, and playback equipment. Users of
the CD-ROM are expected to have a working knowledge of how Mac-
intoshes work (pull-down menus, windows, etc.) and how to con-
nect MIDI devices. More advanced musical skills are highly recom-
mended but not required. You need no knowledge of programming.
Most of the operations of SARA can be accomplished using the
point-and-click operation of the Macintosh mouse. However, skill
with Common LISP at the level of that presented in chapter 3 of
Computers and Musical Style and chapter 4 of this book would be
helpful.

It should be noted that SARA, although modeled on EMI, can only
rarely be expected to equal the quality of EMI's output and then,
only in small forms. The reasons for not including the full EMI pro-
gram here are numerous. Suffice it to say that the reader of this
book is best served by a small, fast, easily learned program rather
than the opposite.

I wish to thank Scot Gresham-Lancaster for all his important con-
tributions over the years as well as Fred Cohen, Randall Wong,
Fredric Lieberman, Eleanor Selfridge-Field, and Walter Hewlett, who
have worked so tirelessly to promote EMI's works as well as for the
use of CCARH (Center for Computer Assisted Research in the
Humanities) databases, and Joseph Chung, Jon Hallstrom and Dale
Skrien (along with Gunnar Proppe, Zhongwei Wu, Steve Lilley and
Zachary Geisz) for much of the MIDI code on the accompanying CD-
ROM. I would also like to thank Victor Sachse, whose faith in EMI
fostered the first CD of EMI-composed works (CRC-2184) on Centaur
Records (8867 Highland Rd., Suite 206, Baton Rouge, La. 70808). Con-
tinued thanks go to those 1 have mentioned already in Computers
and Musical Style. Without the moral support and advice from col-
leagues such as these, work such as EMI could not take place.

PREFACE Xi

m DESCRIPTION OF CD-ROM

Requirements

Contents

The EMI CD-ROM that accompanies Experiments in Musical Intelli-
gence contains almost 650 megabytes of machine composing and per-
forming programs as well as musical examples in a variety of formats.

Macintosh 680xx series computer or Power Macintosh
8 megabytes of RAM minimum

4 megabytes of free disk space

System 7.0 or later

CD-Browser

Requires Sound Manager 3.0 or later for audio playback

Requires QuickTime and QuickTime Musical Instruments extensions
for MIDI

Requires QuickTime PowerPlug extension when used with a Power
Macintosh

(All extensions should be in the Extensions folder in your System
folder)

Apple’s HyperCard or HyperCard Player
To use the documents found in the HyperCard folder

Apple’s Macintosh Common LISP version 3.0 or later
To use the documents found in the LISP folder

The EMI CD-ROM contains a Read Me First! document, the CD-
Browser application, and five folders at the uppermost level.

CD-Browser

This CD-Browser program lets you quickly examine the entire con-
tents of the CD-ROM. With a single mouse-click you can read all the
text documents; audition any of the digital audio files; play back any
of the MIDI files (without an external synthesizer); view all the pro-
gram code, databases, and manuals found in the LISP folder; print
any of the documents; and even launch the HyperCard Composing
programs (provided you have enough memory for both the Browser
and the HyperCard). Click on the tabs at the top of the main window
to navigate between data types. Next, choose items to view or audi-

i

EXPERIMENTS IN MUSICAL INTELLIGENCE

tion from the scrolling list by clicking on the items with the mouse
pointer. Alternatively, you can use the Right and Left arrowkeys to
navigate the top-level tabs and the Up and Down arrow-keys to navi-
gate the scrolling list, in which case you must initiate playback with
the Enter key. For both digital audio playback and MIDI playback
you can press Command-Period to stop playback at any time. Most
of the data types offer several additional controls. For example,
Audio and MIDI data present a volume slider, whereas the Code area
provides an optional external viewing window. A few additional self-
explanatory options are found in the menus.

Note that the CD-Browser does not open any of the Microsoft
Word format files on the CD-ROM. However, there are text-only
copies of all these files to which the Browser does provide access. In
several cases, the original Microsoft Word documents contain
embedded graphics, which are not found in the text-only versions of
the files. In most cases, when viewing a text-only version of one of
these files, you will notice a reference to a missing graphic or a little
white box to indicate that there is a graphic in the Microsoft Word
version of the same file (always found in the same folder).

Alternatively, rather than use the Browser, you may wish to navi-
gate the entire CD-ROM as if it were another hard disk connected to
your system. In this case, you can audition the digital audio and
MIDI examples with your favorite audio or MIDI software (all the
MIDI files are SMFs). To use the files in the LISP folder, you need to
read the instructions found in the document cd-rom cross ref, which
is located in the This CD-ROM folder inside the Read folder. You will
also need to copy some files to your local disk.

Read

The Read folder contains text files in two versions: (1) those created
by Microsoft Word version 5 and (2) those created as text-only files
that can be read by any text-editing or page-layout program. Such
files explain how to use the various programs on this disk. Because
these files often contain information without which a program will
not run or may crash during operation, it is highly advisable that
users take the time to read them before attempting to use any of the
programs in that folder.

Hypercard

There are three types of Hypercard documents on this CD-ROM:
(D Is It Mozart, a program used for the first time at the 1992 Ameri-
can Association of Artificial Intelligence conference in San Jose, Cali-
fornia; (2) composing programs such as Bach Chorales and Chopin

PREFACE Xiii

Mazurkas, which demonstrate various principles described in Exper-
iments in Musical Intelligence; and (3) performance files, which play
back various EMI-composed works. You may also audition these per-
formance files directly from the CD-Browser.

Hypercard requires that you have a Macintosh with a minimum of
8 megabytes of RAM. It may be necessary to increase the HyperCard’s
memory allocation using the Finder’s Get Info option (Command i),
which displays a window in which you can set HyperCard’s preferred
size. It would also be useful, but not necessary, to listen to the exam-
ples using speakers of a higher quality than those built into your Mac-
intosh; for example, plug a component system into the phone jack at
the rear of the Mac or on the side of your monitor.

LISP

The LISP files on this CD-ROM require that you install the Apple
MIDI Manager extensions and that you have Apple’s Macintosh
Common LISP version 3.0 or later. This latter program should be
placed, along with its Examples and Library folders, in the LISP
folder (see the various manuals in the LISP folder of this CD-ROM).
Also, you will need a MIDI interface, a synthesizer or sampler, a play-
back system, and the connections between these various pieces of
equipment. Most of these are standard equipment for composers.
The one item that is not, Macintosh Common LISP, will provide the
means to understand and implement a number of the programs dis-
cussed in Experiments in Musical Intelligence as well as in Computers
and Musical Style (see the Bibliography file in this folder).

Each of the LISP programs on the CD-ROM comes with a manual
that describes in detail how to initiate and use the program.
Because these manuals often contain information without which a
program will not run or may crash during operation, it is highly
advisable that users take the time to read them before attempting to
use the program in that folder.

MIDI

We have provided a CD-Browser program that plays all the example
MIDI files without requiring any external MIDI devices. Alternatively, you
can use an internal (virtual) synthesizer such as the commercial Cyber-
Synth (available from CyberSound) or the built-in synthesizer that came
with your Macintosh or Macintosh System Update—this uses the
sounds in the QuickTime Musical Instruments extension. If you want to
send MIDI output to an external device, you will need a hardware MIDI
interface, which should be connected to a MIDI device of your prefer-
ence. A high-quality sampler with a selection of traditional musical

Xiv

EXPERIMENTS IN MUSICAL INTELLIGENCE

Credits

instrument samples is recommended, because timbral quality con-
tributes to the overall aesthetic response to the output of this software.
Your MIDI device should have a range of at least five octaves.

Audio

The CD-Browser program also allows you to audition many of the
examples referred to in the text. Alternatively, you could use a sepa-
rate sound playback program to listen to these files. You will find
three subfolders in the Audio folder: (1) Examples, (2) emi mac AlFs,
and (3) emi ppc AlFs. The soundfiles in the Examples folder are
numbered to correspond to musical examples in the text. They are
in CD-quality format: 16-bit stereo 44.1 kHz AIFF files. The remaining
two folders contain 8-bit mono AIFF files that are identical to the
sounds referenced by the documents in the EMI HyperCard folder
with the exception of their sample rates. The AIFF files in the emi
mac AlFs folder use a sample rate of 22.254 kHz, which is optimal for
playback on non-PPC Macintoshes, whereas the AIFF files in the emi
ppc AlFs folder use a sample rate of 22.050 kHz, which is optimal for
playback on non-PPC Macintoshes. If you use the CD-Browser to
audition these files, the program will automatically select the appro-
priate soundfile for your Macintosh.

Figures 3.22, 3.24, and 3.27 of EMI-Rachmaninoff for two pianos is per-
formed here by Anatole Leikin and Maria Ezerova. Figures 7.4 and 7.7
are performed by David Cope conducting the University of California
at Santa Cruz Symphony Orchestra. Randy Wong, sopranist, and
Linda Burman-Hall, fortepiano, perform figures 7.5 and 7.6 from the
opera Mozart by EMI.

Feel free to send comments to any of the following e-mail addresses:
howell@cats.ucsc.edu
yavelow@xs4all.nl
Bytehoven@aol.com
ARILZ@aol.com

Use the following e-mail address for CD-ROM technical support questions:
yavelow@xs4all.n}

Check the Computer Music and Digital Audio Series home page on the
World Wide Web for additional information:
http://www.xs4all.nl/~yavelow/ARE/CompMus.html

A

ONE€

Background and
Overview

Computers and Musical Style (Cope 1991a) argues that computers
can be of significant help in finding musical signatures, or often used
patterns that signal a composer’s style. Experiments in Musical Intel-
ligence argues that composers create music by mixing such signa-
tures and using recombinancy, or the recombination of elements
found in other of their works and in the music of other composers.
The program that is described in this book and on the accompa-
nying CD-ROM uses signatures and recombinancy to create music.
This program thus parallels what I believe takes place at some level
in composers’ minds, whether consciously or subconsciously. The
genius of great composers, I believe, lies not in inventing previously
unimagined music but in their ability to effectively reorder and
refine what already exists.

Deryck Cooke, in The Language of Music, states that “inspiration is
an unconscious re-shaping of already existing material” (Cooke 1959,
p. 171). For centuries, composers have experimented with ways of
consciously “re-shaping” existing music to create new but stylistically
convincing works. For example, Athanasius Kircher (1650) and Wolf-
gang Printz (1696) wrote extensively about melodic and harmonic
permutations called ars combinatoria (Ratner 1970). Kircher’s lengthy
Book VIII of his Musurgia Universalis (1650) is dedicated to ars combi-
natoria. Kircher begins with a mathematical exploration of the possi-
bilities of combining melodic elements, complete with charts listing
the number of permutations of available notes given certain numbers
of repetitions. Unlike later treatises, Kircher devotes little discussion
either to histories of music combinatoriae (of which there were few
in his time anyway) or to compositional and aesthetic processes

2

EXPERIMENTS IN MUSICAL INTELLIGENCE

involved in making or choosing particular sets of combinatoriae.
Rather, he delights in large numbers as if he were an astronomer
extolling the virtues of a night sky resplendent with stars. Musurgia
Universalis is important for its time, and it is significant in that such a
major section of this work is devoted to the nascent concept of com-
binatorial possibilities in music.

Printz’s Phrynis Mytilenaeus oder der Satyrischer Componist (Printz
1696), although not as devoted to mathematical extrapolations as
Kircher’s Musurgia Universalis, demonstrates its author’s interest in
the extensive combinatorial possibilities of the variety of melodic
lines possible above a given bass. He notates these melodic alterna-
tives thoroughly and in a way not inconsistent with more formal ars
combinatoria of the century to come.

One of the first formal types of music to incorporate combinato-
rial possibilities was the eighteenth-century Musikalisches Wiirfel-
spiel, or musical dice game. The idea of these musically sophisti-
cated games was to compose a series of measures of music that
could be reassembled in many different ways and still be stylisti-
cally viable. Thus, even a very simple piece becomes a source of
innumerable new works (a typical Wiirfelspiel of sixteen measures
yields 11%, or roughly forty-six quadrillion, works), and each, al-
though varying in aesthetic quality, is stylistically correct. The
music of a Musikalisches Wiirfelspiel is typically arranged randomly
to obscure the fact (particularly to the musically uninitiated) that all
the choices for a first measure, for example, are of the same general
musical function. These arrangements no doubt made such games
seem all the more fantastic in the eighteenth-century parlor, where
they were often played. However, matching the numbers in the
pool of choices with their respective measures demonstrates that
the music of each measure is in fact functionally specific and note-
similar, with each measure often a simple variation of, and inter-
changeable with, others of the same function.

Acknowledged to be the first such Musikalisches Wiirfelspiel, the
polonaise from Johann Philipp Kirnberger's Der allezeit fertige
Polonoisen- und Menuettenkomponist (Kirnberger 1757) is organized
in phrases of six- and eight-measure lengths. The combinatorial pos-
sibilities here equal 11", which, including the minuet and trio (with
11* possibilities), results in a number so large that the “entire popu-
lation of eighteenth-century Europe, working a lifetime on these
games could not exhaust the combinations that lie within Kirn-
berger’s minuets and polonaises” (Ratner 1970, p. 344). Figure 1.1
provides an example of a matrix for a first phrase and a polonaise
drawn from this prototype Musikalisches Wiirfelspiel. The numbers

BACKGROUND AND OVERVIEW 3

A=
Y
| D

i
-
]

CD-ROM

The Musikalisches Wiirfelspiel shown in figures 1.1 to 1.4 can
be heard via MIDI playback by launching the Wiirfelspiel
program on the accompanying CD-ROM and selecting the
composer desired. Timbre suggestions, which appear in the
windows accompanying each selection, are based on the
composer’s own instrumentation given in the original publi-
cations. Listening to these Musikalisches Wiirfelspiel, rather
than just studying their layout, provides clues to their musi-
cal logic, aesthetic basis, and effectiveness of conveying ele-
ments of musical style. <

to the left of the matrix in figure 1.1a represent all possible results of
the toss of two dice (2-12). Each vertical column of the matrix to the
right of these numbers indicates successive measure choices (six in
this case because it is the first phrase of a polonaise). Each number
in these columns is keyed to a measure of music. To get a first mea-
sure of music, one tosses the dice, locates the resulting number to
the left of the matrix, and then notates the measure of music corre-
sponding to the number in the square directly to the right of the
number tossed. Subsequent tosses complete an initial phrase, and
subsequent phrases are produced in the same way (see one result-
ing polonaise in figure 1.1b). Interestingly, Kirnberger includes a sep-
arate guide for the polonaise so that one die or two dice can be used
to give six or eleven choices, depending on one’s situation.

C. P. E. Bach’s Einfall einen doppelten Contrapunct in der Octave
von sechs Tacten zu machen ohne die Regeln davon zu wissen (Bach
1757) differs from Kirnberger's Musikalisches Wiirfelspiel by com-
bining individual notes rather than measures from tables. Figure 1.2
gives both a sample from his tables and an invention as output. The
arcane process used to create this invention involves choosing six
random numbers from the numbers 1 to 9 (inclusive) for each of
two voices. Numbers may be repeated as desired. These numbers
then represent entry points into the six respective tables, each rep-
resenting one measure of music for one of the voices. Once the
initial note is found, one continues to select successive ninth mem-
bers of the table until an “X,” signaling a barline, is found. Eventu-
ally, six complete measures of music are produced in this manner,

4 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.1

Excerpt from Kirnberger's Der allezeit fertige
Polonoisen- und Mennuettenkormponist
(1757): a) Matrix for a first phrase.

Measure: 1 2 3 4 5 6
Dice:
21 70 34 68 18 32 58
3 10 24 50 46 14 26
4 42 6 60 2 52 66
5 62 8 36 12 16 38
6 44 56 40 79 48 54
7 72 30 4 28 22 64
8{ 114 12 126 87 89 88
9| 123 116 137 110 91 98
0] 131 147 143 113 | 101 115
1] 138 151 118 124 | 141 127
12| 144 153 146 128 150 154

Thus, a selection of 1 for the first table yields the quarter note E fol-
lowed by the quarter note G, nine elements to its right. Then E and
C quarter notes complete the first measure for the upper (descant)
voice. The bass voice is constructed in the same manner from a
separate set of tables. The resulting six-measure, two-voice coun-

BACKGROUND AND OVERVIEW 5

b) A resulting polonaise.

terpoint may then be successfully inverted by transposing either
the top voice down one octave or the bottom voice up one octave.
Eugene Helm (1966) computes the possible number of works from
Bach’s tables to be more than 282 billion, with inversions giving an
identical amount.

6

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.2 a)Tables 1 and 2 from Einfall einen
doppelten Contrapunct in der Octave
von sechs Tacten zu machen ohne die
Regeln davon zu wissen by C. PE. Bach.

l"l;l[l'

I T P | I | I I | | I I PEE | | - |

A P 7 / \
5 15— T A T S T AT AT A AT AT AT AT AL A
— . — .
e e e e e e e e e e e e o e e S e
111 | | | .| | |) I 4 17 ! | | ! t D17 I —1
0 1 } 1 I o T 7 1T 11 | -
v' 'V |E) | | - 1 I'V 1 | 1 | |! 1 I | =:Vl {' 1
— 22— l£; lﬁ‘ 2
T | A A — | LA N S A S 7 SO S S o i Fr— -] - A
] I +—] 4/ ——— 1 1 :lv’ F AR D) T N7 11 1 N7 1 17 | L] N1
5 1 i 1 1 | 1 1 AT AT T A
Ila Ilal (2 2
s | | | I 1 11 I i E Py A]
:} =: 1 1 x | 11 IVIVI\I= I I I I — I
A 1 A "l 1 1 | - A 1T A 1 A1
5 } } FA— } FATAFAH ,} E‘ .I .*‘ ,I ,*‘ ,l .*‘ ,I .*‘ ,I .} E‘ ,l .;ﬁ({

C. P. E. Bach’s original description and tables first appeared in
volume 3 of Marpurg’s critical/historical survey of music (Bach
1757) as the only foldout tables of music in the lengthy five-volume
set. Helm refers to Bach’s work in this genre as “the trivialization of
music’s ancient and honorable relation to number” (Helm 1966,
p. 150). On the other hand, Ratner states that although these works

BACKGROUND AND OVERVIEW 7

Figure 1.2 b) A resultant Invention: upper voice
(descant): 2-5-6-3-4-1; lower voice (bass):
6-8-2-1-9-3.
Table I: Table i
2 11 20 29 38 47 5 65 5 14 23 32
- T — - e =
A\I¥4 Y — | =e— i' e } ; t
P o
e————F L e o be
? —] : : ' : ;
N
[£ a0 1 | 1 1 1 1 1] c) IR | ! yl 1
\v\/ | e——] e {
—}
Z P P o o, 0 0 o, @ O
1 1 1 | 1 1 1 1 1 1

“are not superb musical compositions, they possess coherence and
validity of style because their harmonic, rhythmic, and melodic
components are built of useful musical stuff” (Ratner 1970, p. 344).
Regardless of import, Bach’s method stands as a precursor of the
micro augmented transition network (MATN), one of the cornerstones
of EMI and SARA (see chapter 5).

Another particularly good example of a Musikalisches Wiirfelspiel
from this period is shown in figure 1.3. Attributed to Mozart (K. 516f)
but not authenticated, it consists of two 8-by-11 matrices containing
the numbers 1 to 176 (2 x 8 x 11) and the corresponding keyed mea-
sures of music in the same way as the previously discussed Wiirfel-
spiel by Kirnberger. According to the formula N = D, where D = verti-
cal dimension and r = rank, these two matrices allow for 11%
combinations, or 45,949,729,863,572,161 possible new works.

Figure 1.4 shows the musical results of a Musikalisches Wiirfelspiel
attributed to Haydn (1793; see also the anonymous attribution in
Taubert 1988). This full-scale Wiirfelspiel contains four matrices: two
11 x 8 matrices for a two-phrase minuet and two 6 x 8 matrices (a
die version) for a two-phrase trio. The music is extensive and highly
varied, and although it remains a dice game, the amount of effort
taken to complete the work suggests that the composer saw it as a
significant achievement.

8 EXPERIMENTS IN MUSICAL INTELLIGENCE BACKGROUND AND OVERVIEW 9

Figure 1.3 Mozart, Musikalisches Wirfelspiel (K. 516f). Figure 1.4 Haydn, Musikalisches Wrfelspiel.
40 60 27 63 75 96 95 10 13
. ° # () 4 PR = — e = :
e nmrt—_= EEE= == L= == P e e —1 ! =% =
R e B - — R = o -

e
™
e
T
el
a
i]
!
el
| lg]
il
et
*I
oLn]
ollell
e

16

f-N

i

T
>
-
L)
3

E:
===
T
e
1e
A

A
s.."
i)

~ue
(18

[10N
Qa.
e
=0 e

[18

e

7 . 82
= e £ .
R B o
D]] [
= G e
= it £ : 3 £ 2 o
! ! ‘i.;u) 1 f T r } i - >
=t £ == —— =T

51 18 23 8 Fine

Other composers who created Wiirfelspiel include Maximilian
Stadler (1780), Antonio Callegari (1802), and Pasquale Ricci (n.d.).

>
'.F
9
®
v
TIL
-l "‘)
)
"—! A]
)
T
T

Pierre Hoegi, whose A Tabular System Whereby the Art of Composing e -

Minuets Is made so Easy that any Person, without the least knowledge %_i o f I e ——

of Musick, may compose ten thousand, all different, and in the most = i — 1 L3 - —= ey +

Pleasing and Correct Manner (1770) uses number choices from 8 to

48 for composing two eight-bar phrases, and E. F. Delange (n.d.), 82 50 1

who employs a nine-sided top for chance selection, also contributed 40

combinatorial compositions similar to the Wiirfelspiel. Obviously, o a7 § » FAE — I

the composers involved with these games knew the style of their $] r LA?L i 1 = <

period intimately and coupled that knowledge with their own inge- 3

nuity to compose musical fragments that could be assembled in

various ways and still work effectively. S = . = . > e]‘. $
— : — \JF — . —

10 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.4 continued.

37 41 44 13
8 2 _ Py
P - SN — —~
D —] 2 1 1 T i
.) e 1 | m—— ‘I !
3 3 3 3
! | N *
i : I ‘ ———— > 2 —e
, . < = : = < r e
36 5 93 86
O 4 & | ™
.*“.I?L —o——
o ! qtﬁ;é '4;__' 14-;_1 ;I
| b oy |
o : ;;“} o oy 7} = T
o — - s ;r' i
95 47 66
T 3
r- | | Y - "——- Ja— t
e e e e -
) 3 T ™ E
3
s £ 2o |e £
< ! ! t f] 1 o ! —~ 1
= T ! 1 { 1 { =|I

Arnold Feil (1955) postulates that the Musikalisches Wiirfelspiel
demonstrates the harmonic and melodic thinking of its musical time.
Feil points out that Joseph Riepel and Heinrich Christoph Koch, two
influential theorist-composers of eighteenth-century Germany, used
Kirnberger’s dice music for instructional purposes in composition.
Both Riepel (1757) and Koch (1782-93) also included Wiirfelspiel
exercises in their respective treatises on composition (see the bibli-
ography at the end of the book). Francesco Galeazzi (1791-96)
employed similar Wiirfelspiel techniques for teaching composition,
though his approach more resembled the permutations of Kircher of
150 years earlier in that he used only rearrangements of melodic
groupings rather than harmonically interchangeable measures. Inter-
estingly, both of these approaches seem to be oriented toward the
defeat of composer’s block—to unleash the imagination—an aim not
dissimilar from that used for the creation of EMI itself.

BACKGROUND AND OVERVIEW 11

William S. Newman states that Kirnberger’s Musikalisches Wiirfel-
spiel and other writings about combinative and modeling musical
processes “were done in dead earnest” (Newman 1961, p. 517). New-
man further notes that these comments regard the relation between
Kirnberger’s “Ever-Ready Polonaise- and Minuett-Composer” and his
later “method for tossing off sonatas” that “were formerly regarded
as intentional jests if not deliberate pieces of satire.” Ratner adds
that

the process by which the games were put together reflects a substantial
view of musical construction, one that permeates the seventeenth and
eighteenth centuries. In this view, the play of musical elements is con-
trolled so as to achieve a coherent and persuasive flow of rhetoric. At
this time in musical history it was possible to codify the mechanical ele-
ments of musical composition more clearly than at any other time. (Rat-
ner 1970, p. 345)

Many composers and theoreticians did not stop at employing
the Wiirfelspiel and paraphrasing techniques for small forms. For
example, Riepel (1755) proposed the creation of major works using
combinatorial procedures: “Riepel proceeds along these lines as he
works out melodic combinations in the construction of minuets,
concertos, and symphonies. Within a given model he seeks to
achieve optimum effects by substituting figures, phrases, and
cadences” (Ratner 1970, p. 351). If one were to substitute the words
“signatures” and “measures” for “figures” and “phrases” in Ratner’s
comment, the quotation could just as easily be applied to EMI as
Riepel’s work of 230 years earlier. Riepel also calculated permuta-
tions for other elements of music, such as bowings and rhythms,
and became one of the eighteenth century’s most serious advo-
cates of recombinancy: “The unique art of permutations, by which
one can uncover in a single day far more than 99 themes, is at least
99 times healthier for composition than the calculation of ratios”
(Lester 1992, p. 226, as quoted from Riepel 1755, p. 25).

These thoughts again underline the seriousness with which com-
posers and authors of the eighteenth century took these supposed
diversions. In many cases, such as that of Galeazzi (1791-96), the
techniques of combination were used as vehicles for teaching music
theory and composition:

We find many who can proceed with a given figure with little effort but
who have insuperable difficulties when they have to create new material.
Here is something that can assist in composition with which one can dis-
cover a hundred, a thousand in the twinkling of an eye: it may appear
puerile but first experiment with it and then judge. (Galeazzi 1791-96,
vol. 2, p. 248)

12

EXPERIMENTS IN MUSICAL INTELLIGENCE

Again, the similarity to EMI is unmistakable, including the refer-
ences to the number and speed of discoveries, which read like a
description of a computer program.

Aside from more formal Musikalisches Wiirfelspiel, many com-
posers devised and developed techniques for musical invention on
the basis of similar principles. For example, Kirnberger’s Methode
Sonaten aus’m Ermel zu schiiddeln (1783) describes the composer-
theorist’s method for creating new sonatas by borrowing and then
varying melodies and thorough basses of other composers. De-
scribed by Newman as “a panacea for the would-be composer
devoid of inspiration,” it

suggests that such a person, or anyone else, should borrow a thorough
bass from some existing source, contrive a new melody to go over it,
then contrive a new bass to go under that melody. In other words, by
changing first the roof, then the foundation, he can have an entirely new
house! (Newman 1961, p. 519)

In his method Kirnberger creates a partial list of rules that provide
an interesting vehicle for the creation of variations: (1) know how to
compose in a thorough bass style, (2) frequently invert the counter-
point, (3) change the meter, and (4) change the key. Figure 1.5 gives
the first few bars of Kirnberger’s example, which illustrates his text.
As can be seen (if not by his rules then by his example), the new
music is an embellished version of the older Bach gigue, with notes
being added usually in the form of anticipations, delays, scales, and
arpeggiation of implied and actual harmonies. Interestingly, Kirn-
berger’s techniques are not dissimilar to those found in EMI's and
SARA's composing programs (see chapter 6).

Kirnberger’s variation techniques introduce yet another, more
flexible approach to Cooke’s musical “re-shaping”: the borrowing or
lifting of previously composed music. Such borrowing necessarily
suggests recomposition in the manner of the Wiirfelspiel even though
the recomposer is the only one playing the game. Composers have
been borrowing motives and themes, consciously or subconsciously,
for centuries. Whether this is plagiarism or the sincerest form of flat-
tery is perhaps best determined by the one being imitated. Such
piecemealing of other composers’ ideas with one’s own music cer-
tainly falls into the category of musical pastiche if not Wiirfelspiel.
For example, Clementi documented his Piano Sonata, op. 24, no. 2
(1781), with a note indicating that Mozart was present (“Mozart étant
présent” [Plantinga 1977]) when he performed this piece for Em-
peror Joseph I (Barlow 1948, p. xii). Figure 1.6 compares the first
theme of the first movement of Clementi’s work with the main theme
of the overture to Mozart’s Magic Flute (K. 620), which appeared ten

BACKGROUND AND OVERVIEW 13

Figure 1.5 Excerpt from Kirnberger’'s Methode
Sonaten aus'm Ermel zu schiddeln,
demonstrating how he embellished the
gigue from J.S. Bach’s French Suite no. 6.
A 4 8.
il = - f = }
=E2 == : 2 > = & =,
D] |14 T 1 |
J.S. Bach:
a1~ e - S - =rl
£ » —————————
R Ee e =
R
Kirberger:
- a_p £
O ; . !
1 'y ';l_]l. F .4 ’l' =l irl ’] i 1
D) v
, B - _
D= ; ——=—r ¢ r ——F 7
> £ o £,
.ﬂgﬁgﬁg —— f—— —f_
¢ —
. -
o B ea2f |E Eﬁﬁggggﬁ
Q:‘",?”‘. pﬁ%

years later (1791). Clearly this is more than influence: it is an exam-
ple of the plagiarism or flattery that lends some credence to the
notion that classical composers often feasted on one another’s
music. At the very least, classical composers borrowed stylistic sig-
natures and, more likely, actual musical fragments that they liked too
much to leave unappreciated in their own works.

14 EXPERIMENTS IN MUSICAL INTELLIGENCE
Figure 1.6) Clementi theme from Piano Sonata,
op. 24, no. 2, first movement, mm. 1-3.
b) Mozart, theme from The Magic Flute
(K. 620), overture.
a.

ll,, I J— J— Jr—]
LR ==
b.

0O 1

1]
[
[

Another example of this type of borrowing is Beethoven’s use of a
Mozart fragment in the second movement of his Pathétigue Sonata
(figure 1.7). Although only three melodic notes (C-Bb-Eb) exist in
common between these two themes, Beethoven’s use of the identi-
cal key (Ab major) and nearly identical harmonization reveals the
Mozartean origins. Leonard Meyer (1989) points out even subtler
refinements of these kinds of borrowing techniques by Handel, Bach,
and Mabhler as well as further examples from Haydn and Mozart.

A number of classical composers employed variants of the
“Mannheim rocket,” so named because the ascending arpeggiated fig-
ure was popular with eighteenth-century composers in Mannheim.
Rockets are another example of simple but reasonably elegant bor-
rowing, though the source is not as clear as in the previous exam-
ples. Figure 1.8 shows six examples of the well-known figure spanning
over fifty years of the eighteenth and nineteenth centuries. Each of
these examples occurs in exposed and primary sections of their
respective works, and each is yet another example of how classical
composers grafted known musical fragments together to create what
I call recombinancy. What is even more fascinating about the Mann-
heim rocket, however, is the way in which composers varied the rec-
ognizable motive beyond the simple transpositions and rhythms
shown in figure 1.8. Figure 1.9 presents three examples of such a vari-
ant used by composers with quite different compositional styles.
Here, scale degree 5 is anticipated with a chromatic lower-neighbor
tone combining the Mannheim rocket with another classical signa-
ture (see figure 1.17). Thus, even borrowed fragments fall prey to fur-
ther, more subtle recombinancy.

Figure 1.7

Adagio cantabile

BACKGROUND AND OVERVIEW 15

Q) Beethoven, Piano Sonata, op. 13
(Pathétique), second movement, mm.
1-8. b) Mozart, Piano Sonata (K. 457),
second movement, m. 24,

%ﬁ. 2 ‘1' J J ;l iz_/ T
/—_ﬂ

b.n | - é _j _i j i l:j _E i _a

e S =

S5 .

F

Many theorists (notably Cooke 1959) believe that certain figures,
used by many classical composers over hundreds of years, have
quasi-definable meanings. Cooke presents exhaustive charts of com-
positional resemblances and suggests associations to support his
thesis that music is a quantifiable language. Such a language can be
thought of, at least in part, as a compilation of various known inter-
vallic or pitch sets borrowed not from the themes of individual com-
posers but from a larger musical-cultural frame of reference. Figure
1.10 presents eleven highly similar melodies from over ten centuries
of Western traditional music. Each of these examples follows the
1-5-6-5 (scale degrees) pattern, though many have interpolated
notes as well as different rhythms and modes (major or minor). A
discussion of whether these themes are just coincidentally similar
or whether they belong to a cognitive vocabulary of identifiable ges-
tures within a larger linguistic composite belongs in a larger volume
than the present one. However, as with thematic borrowing, such
theorizing suggests that a musical semiotics might exist wherein

16

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.8 a) Mozart, String Quartet, K. 465
("Dissonance”), third movement (1785).

b) Mozart, Symphony no. 40 in G minor,

K. 550, fourth movement (1788).¢c)
Beethoven, Piano Sonata,op.2,no. 1,
first movement (1795). d) Beethoven,
Symphony no. 5, 0p. 67, third movement
(1808). e) Mendelssohn, String Quartet,
op.44,n0. 2, first movement (1837).1)

Schumann, String Quartet, op.41,n0. 2,

third movement (1842).
a.
, . 2 E £
‘%:i?] —
.) - 1 { AS 1 T X 1 1
b.
4[) ' 1 i . ‘F 1 -IP- 1 i1
——e——r—+ | =]
1
C.
A 1, I - »° -
o ——— —a—F 1 S =
) _‘l_ ﬁj'_t I U I tigb 1
d.
— T -19- 1 1 .IP_ Ha 77+ 1
e.
¥ o -
i €— i E _E » T E i {' } ‘1:
.)\I il. 1 = - i 1 T T 1 — |
f
-
| . r E =
L /A] ‘IL\: i P 1 1 = ‘}
> @ 1 — —

BACKGROUND AND OVERVIEW 17

Figure 1.9 a) Haydn, Symphony no. 103, second

Figure 1.10

movement (1795). b) Schubert, Symphony
no. 4, fourth movement (1816). ¢) Saint-
Saéns, Le rouet d’Omphale, op. 31 (1870).

Q.
: —_— r— =|
g P o = : 1'
,‘_ - iy —
b 3
b.
| \ - 1t
T ; —— ! !
h s =,] £ i =|
C.

a) The plainsong Puer natus est (ninth
century). b) Brulé, Cil qui d’Amors (twelfth
century). c) Ockeghem, Malheur (1480).
d) Josquin des Prez, Qui velatus est (1510).

N
AL
R
N
L

L

T
TR
B

9

&

&

l
alll
L1
il
[\ INER
|

G
allll

18 EXPERIMENTS IN MUSICAL INTELLIGENCE BACKGROUND AND OVERVIEW 19

Figure 1.10 e) Byrd, O Lord my God (1611).f) Bach,

e signs and signals have definite meanings for initiated listeners.
Mg?;gtﬂo/ ,r;o. 6?7 (](@g)q) BGChESf' | This use of semiotics again hints at a recombinant approach to com-
tune O L Gr?ﬁ'f’lrocgoﬂes L)”;":(':r;)%/(él orale position where, intentional or not, music is not simply through-
h) Mozart, Piano Sonata K. 545 (%].788 composed but rather an intricate mosaic of potentially recognizable
) Mendelésohn,“Then shoi.l the righ’réous” gestures and subgestures. Interestingly, semiotic organization very
from Elijah (1846).) Verdi, Presago il much resembles natural language analytic processes such as ATN,
core” from Aida (1870). k) Vaughan- so integral to EMI and SARA (discussed in the relevant sections of
Williams, "So shalt thou enter in“ from this chapter and in chapter 5).

Pilgrim’s Progress (1949). Figure 1.11 presents yet another example of quasi-quotation that
includes elements of each of the previous examples. The music here

e.

l | = = 7 | =
% > i = : =2
o ~ ! — : : Figure 1.11 @) Henry Purcell, Dido’s Lament from Dido
(and Aeneas (1689). b) Beethoven, Piano
) 4 Sonata., op. 13 (Pathétique), first move-
o , ——— e ——" 1 ment (1798). c) Tchaikovsky, Symphony
L E——— P 's‘:‘:f_‘i -] H ' i no. 6 (Pathétique), first movement, mm.
® 20-21 (1893).

g.

> = i : Fe ——r e a

35— L o H f t H A1 A ! |

) ' ' g ; = = :
o L r 2 b
h. D) A | l
ﬁ F; 1.7 I 'y I .lﬂ. 1.7 F 1_’_ "T'tr "ﬁ —
o= —F :g-{ — : e e s e : 2 2
A 11 1 -
2 ! e o i = —f
e ——F—= | ! b
¢ — =~ -
T e e— — E:
Q - y ! } } I = =] 1 ® ivi # hi i_hij
ot—T—— e Lo P L _——
ot
u | - T ; g}' J :}: Agf %
.jl x g b T i : T ; c.
i P | 1 T
o—F—7 —
) N4 N ¥
N 1
& r ’7 [
e

20

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.12

was composed over a two-century period. However, the mutual
influence appears to be more than random. Subtitles aside (because
not all were given by their respective composers), all three works
show clear similarities in tempo, mode choice, and general use of
dissonance. The rising 1-2-3-2 scale degree figure is predominant
in all three cases, though the Beethoven example extends the fore-
ground iterations of the Purcell, and the Tchaikovsky further varies
the initial motive by extended repetition. The harmonic accompani-
ments to the minor-key figures include embellishing secondary
dominants (Beethoven and Tchaikovsky) as well as differing metric
emphasis, though all three examples include placement of scale
degree 3 on a strong beat. Harmony, then, as well as melody partici-
pates in the recombinancy of the imitations that continue in quite
diverse ways beyond the music shown.

On an even more sophisticated level, Meyer (1989, p. 54) demon-
strates how the foreground notes of a Mahler theme follow the back-
ground structures of “and He shall reign for ever and ever” from
Handel’s Messiah. In a similar manner, he argues convincingly that
the Adeste Fidelis theme, so often heard in baroque and classical
music, occurs infrequently in romantic music, suggesting uncon-
scious but nonetheless purposeful avoidance of the vocabulary of
previous centuries. Again, the notion of music created from frag-
ments of previous compositions is foremost.

Figure 1.12a shows a recombinant example created using various
segments of music from Mozart and Beethoven. Note that this
phrase is quite similar in sound to the beginning of the second
movement of Beethoven’s Pathétique Sonata, op. 13, though none of
the music emanates from that source. Figure 1.12b shows the music
of figure 1.12a transposed to the proper key so that the melody and
harmony generally follow that of Beethoven’s original Adagio
Cantabile of op. 13 (shown in figure 1.12¢). None of this cutting and
pasting is presented to indicate that these derivations were the
actual source of Beethoven’s inspiration for the theme of the Pathé-
tigue. This example, however, indicates one possible process by
which music can be created—the process of recombinancy.

) A recombinant example from (1) Mozart, Piano Sonata (K.
457),second movement, m. 24; (2) Beethoven, Piano Sonata, op.
10, no. 2, first movement, mm. 19-20; (3) Beethoven, Piano Sonata,
op. 10,no. 2, first movement, m. 28; (4) Beethoven, Piano Sonataq,
op.2,no. 3,second movement, m. 9; (5) Beethoven, Piano Sonata,
op.2.no. 1,second movement, mm. 15-16.

BACKGROUND AND OVERVIEW 21

Q. ﬁ ﬁ
Ln 1 - :- ot afa—
S = *
p cresc.
< @ [S S

2.

0 T) 4:
o : E
% ;Z ;7 |

3. . ——

o F fe

Y] T r

4.

H-4 4, .=/\’.‘ /—E‘.'
W — e—F

o) __.’g

~ —~ 7
1 'Jl * j ‘J:EV} HL .;
) 1% =

5. K

g b L lhe o o 2a,
..)Vv F i
, s @
S==S == ——=——— '

22

EXPERIMENTS IN MUSICAL INTELLIGENCE
Figure 1.12 b) Example a with transpositions to the
same key. ¢) Beginning of Beethoven, Piano
Sonata, op. 13,n0. 2,second movement.
> - 2 f"‘"'q’#' 2f o i
. ——— T 77—
= s = oy '
T i | T g &
bt a: % -‘]'- -‘}- -‘{ r_"E_‘_jﬁ_‘;j S

b

b
Adagio cantabile =
ha /—_\
“""“W&!%&ﬁé £ %ﬂ:ﬂ&pﬁiﬁt
o
S e e e e —
P
% T ! { — .
b 1 e d } 1 - n
o] 1u ¥ &
- .
SO TS v v o P
T — 99 »
N——
= 2 !] ; i =
= ! — 3 = =
-

ol

m CHALLENGES

BACKGROUND AND OVERVIEW 23

A clear, common link among all these examples is that the process
of composition, at least in many cases, involves combining elements
of previously heard music. This process includes everything from
stylistic signatures of a composer’s period to actual paraphrases of
certain works. These techniques, in combination with possibly more
innovative ideas, are then used to create new works. This combina-
tion, or recombinancy, is not simply a game or superficial technique
but rather a deep manifestation of the creative process. Thus, the
concept of Wiirfelspiel becomes less a digression and more an insight.
In fact, it becomes a significant part of the fabric of all music. Whether
such techniques are discernible and translatable as language (as
Cooke would have it) or whether they present a route to recognize
sources and influences is beside the point. If these techniques are
integral to the compositional process, then they are logical rationale
for the basis of computer programs such as EMI and SARA, which are
themselves far more than Wiirfelspiel and far more than simple digres-
sions from more traditional composing rhetorics.

Thus, quotation, paraphrase, and semiotics contribute to a sense
that composers of Western concert music at least, acquire techniques
that allow them to formulate their music as subtle Musikalisches
Wiirfelspiel. 1f this is true, even to a superficial degree, it leads one to
a proposition that computers, with the same wealth of potential
quotations, paraphrasing abilities, and semiotic information, might
effectively mimic such compositional strategies. One can certainly
imagine a computer program that is modeled on these techniques
producing examples like those found in the variations of all the pre-
vious figures.

The challenges for computer composition are numerous (Hiller
1970; Hiller and Isaacson 1959; Lidov and Gabura 1973; Winograd
1968). Computers have been used in automated music (Ames 1987;
Rowe 1993; Winsor 1987), in algorithmic composition (Fry 1984;
Janzen 1992), and as stochastic probability generators (Xenakis
1971), to name a few examples. Also, artificial intelligence systems
have created serious interest for music analysis (Buxton 1978;
Roads 1984) and composition (Cope 1987). However, the problems
posed by computer composition are more profound than just com-
puters creating interesting, even aesthetically engaging, new music.

24

EXPERIMENTS IN MUSICAL INTELLIGENCE

The concept that music can be quantified into categories and then
analyzed, replicated, and/or performed by digital means continues to
be one of the greatest challenges facing computer composition today.
Just the thought of describing complex analog phenomena in Suppos-
edly equivalent digital terms leads some to believe that computers
will never be able to adequately compose or perform nontrivial
music. The use of MIDI by many computer programs compounds
these problems by allowing a complex phenomenon such as timbre
to be assigned to tracks and channels rather than being linked to the
compositional process, as they often are in real life. At the same time,
advances made in the computational world in just the past twenty
years gives one optimism for future potential. It is possible that the
sophistication of computers and programming will be able to sur-
mount any such obstacles in the not-so-distant future.

Another challenge facing music composition by computers is over-
coming human bias toward machines (or, more subtly, against pro-
grammers of machines). As [have said on many occasions, “Machines
don’t compose” (Duisberg 1993, p. 87), and computers “do not pos-
sess any choice capabilities other than those that have been com-
poser programmed or those derived from random selection” (Cope
1977, p. 210). Humans write programs that compose by machines. The
machine follows the dictates of the programmer. Somehow in the per-
ceived magic of computer composition, machines are often seen to
create from a vacuum and as such are often perceived as aliens com-
peting for activities previously held sacrosanct for humans. Comput-
ers, however, are not our rivals—they are our slaves.

Critics of computer composition can point to the many works
composed by computer programs that have been destined to obscu-
rity by their experimental nature or their necessary reliance upon
almost immediately out-of-date machines. There are also many exam-
ples of very bad computer music (not unlike similar bad acoustic
music) that can (and do) fuel arguments against successful work
emanating from this technology. It is my hope that this book, along
with Computers and Musical Style (Cope 1991a), will contribute to the
notion that composers who create notes on paper and composers
who write computer composition programs are of the same cloth. As
in all artistic matters, it should be aesthetics and not ideology that
separates the wheat from the chaff.

Computers offer extraordinary opportunities for creating recombi-
nant music through their arbitrary decision making, speed, and accu-
racy. As previously noted, computers are controlled by programs, and
programs that create new output are often called algorithms. A musi-
cal algorithm is a sequence or set of rules for solving (accomplishing)
a particular problem in a finite number of steps that combines musi-

BACKGROUND AND OVERVIEW 25

cal parts into a whole composition (see Cope 1992, p. 24). Thus, algo-
rithms offer composers and musicologists great opportunities to cre-
ate and study music from the standpoint of recombinancy. Ultimately,
the levels and degrees of recombinancy lead one to musical style and
its inheritance and development as well as to a better understanding
of the processes involved in composing itself.

EMI and SARA create new examples of music by analyzing, dis-
assembling, and recombining music that was not written to be ana-
lyzed, disassembled, and recombined. EMI and SARA separate and
analyze musical gestures and then mix and recombine the patterns
of those gestures in such a way that each new resultant composi-
tion, although different, is nonetheless substantially correct. New
works generally inherit aspects of the style of the analyzed and dis-
assembled music and, to a lesser degree, the style of the composer
of that music. This process is not just a parlor game but a serious
attempt to understand how listeners recognize the style of a com-
poser or period, one of the more elusive and difficult-to-describe
musical phenomena. It is also an attempt to model a computer pro-
gram on recombinant musical processes.

Although music naturally includes timbre (Slawson 1985) and
other performance complexities (Anderson and Kuivila 1991), re-
search with EMI and SARA focuses exclusively on pitch, duration, and
to some extent dynamics. This is not meant to denigrate other areas
of possible study. However, this limitation confines the research
to a reasonable frame of endeavor.

m GENERAL ALGORITHM

EMI began in 1981 as an attempt to create new instances of music in
my style. With a lack of quantifiable definitions of style (especially
my own style), I concentrated on pattern matching the works of cer-
tain composers. This resulted in the identification of what I call signa-
tures. By 1987 EMI had produced works (arguably) in the styles of
Bach and Mozart (among others) using such signatures. Further
experimentation with pattern matching, the use of certain natural lan-
guage processes, and the employment of object orientation allowed
for more extensive output in terms of work length, complexity, and
stylistic diversity. EMI subsequently produced new works in the
styles of composers as different as Stravinsky, Palestrina, and Scott
Joplin. These works have been discussed and partly reproduced in
my book Computers and Musical Style (Cope 1991a).

26

EXPERIMENTS IN MUSICAL INTELLIGENCE

As previously mentioned, EMI and SARA attempt to make Musi-
kalisches Wiirfelspiel out of music not designed to be such by using
pattern matching to avoid deconstructing elements integral to
the style of the works being recombined. Although this simple
abstraction belies both the intricate analysis required during
deconstruction and the complicated networking necessary during
recombination, it does present the basic plan of the EMI and SARA
processes. Figure 1.13 gives a more specific general algorithm for the
program presented in this book. Each of the six stages presented is an
integral function of the system as a whole. In stage 1, music enters the
algorithm in the form of events (see chapter 2) that describe the note
attributes of pitch, timing, duration, dynamic, and channel. In stage 2,
this music is analyzed according to the SPEAC system of identifiers
(for definitions, see chapter 2 of both this book and Computers and
Musical Style [Cope 1991a]). In stage 3, pattern matching protects sig-
natures from recombinancy by a special process described further in
chapters 3 and 4. In stage 4, deconstruction places each musical seg-
ment in an appropriate lexicon according to its SPEAC meaning.
These musical segments are then reconstructed in stage 5 according
to a musical augmented transition network, or ATN (described further
in chapter 5), producing new music in stage 6.

The analysis in stage 2 of figure 1.13 is not unlike that of creating
music for a Musikalisches Wiirfelspiel. Likewise, the ATN of stage 5
is similar to the rolling of the dice of a Musikalisches Wiirfelspiel,
although the ATN provides a much more intelligent approach than ran-
dom selection. The intervening stages of pattern matching, which
determine which fragments may not be deconstructed, and deconstruc-
tion itself roughly parallel the creation of the music and the matrices of
a Musikalisches Wiirfelspiel. If the input music is analyzed properly,
retains its stylistic signatures through pattern matching, and is deftly
reconstructed through the ATN, then the new connections in stage 5
will create musically interesting and stylistically believable new music
output. Elements of revision, similar to Kirnberger’s Methode Sonaten
aus’'m Ermel zu schiiddeln (1783) and C. P. E. Bach’s note-by-note
processes, occur in stage 5 of this algorithm. Databases, signatures,
and new works can be found in stages 1, 3, and 6, respectively.

Note that the algorithm shown in figure 1.13 is devoid of any inter-
face descriptions such as MIDI playback, database storage, file types,
and so on. These are described in the manual on the accompanying
CD-ROM. This algorithm could therefore be implemented on any plat-
form. However, it should be noted that LISP is the language used
here for programming, and CLOS (the Common LISP Object System)
is the object system of choice.

BACKGROUND AND OVERVIEW 27

Figure 1.13 A general algorithm for EMI.

General
algorithm

Music
1. (input)

Pattern
matching

Signature
dictionary

e

Lexicons

Deconstruction

Reconstruction
(ATN)

6. New music
(output)

m APPROACHES TO ANALYSIS

Some of the fundamental problems of building a program to produce
effective recombinant music include determining (1) the length of
the elements of the original music to be deconstructed, (2) the

EXPERIMENTS IN MUSICAL INTELLIGENCE

method to be used to analyze these elements, and (3) how these ele-
ments should be recombined to make musical sense. After all, ran-
dom recombination produces chaotic results (compare the music in
figures 1.14 and 1.15). Figure 1.14 presents two examples of music

Figure 1.14

BACKGROUND AND OVERVIEW 29

Music from Mozart sonatas clarified
according to the principles presented in
chapter 2: a) K. 283, second movement,
mm. 1-4. b) K. 330, third movement, mm.

from Mozart’s sonatas. Figure 1.15 is a random recombination of the ?-16.

quarter-note beats of figure 1.14 and shows the source of each reor-
ganized beat. Here, “A” refers to figure 1.14a and “B” to figure 1.14b, Al 9
with the numbers representing the location by measure number and F e .
then by beat number. (Another random recombinant example is o —_ —
given in figure 5.14b.)

The new composition shown in figure 1.15 is musical gibberish, as
can be seen (and heard if played). Neither the common practice of]
Mozart’s period nor his own style has survived the recombination o+ @ e _i'_
because Mozart did not compose these phrases to be deconstructed
and recombined and because the deconstruction and recombination
were done unintelligently and unmusically. Important questions n 3) 4 |
about the size of the musical elements (one beat in figure 1.15) and e i — — o
about whether harmony and melody should be considered together DA — —
or separately have been ignored, as has the repetition of the first two
measures in both originals in figure 1.14 (in both cases with varia- ; - - - £
tion). Nor has attention been paid to the manner in which the reorga- 3 e § . _F:‘_—_H r e
nized material has been reconnected. For example, the harmonic pro- . L
gressions of both figure 1.14a and figure 1.14b have been mutilated
and no longer fit the stylistic constraints of Mozart or his period.

\Il
it

Lﬂ
T
i)

Obviously, great care must be taken in deconstructing the origi- b.
nal works, analyzing each of the various constituent parts, and then A 2 ' 3 4
recombining the various parts in a new but musically viable order. o - ' e — : .
Recombinant music must assume the musical logic inherent in the D — — i —;EE.'L;_P = '
original works on which it bases its new composition. In EMI and
SARA, this is accomplished by (1) analyzing each component for its])
deep hierarchical musical function, (2) pattern matching for signals : ?:F.F T3 I — ﬂ,ﬁ
of a certain composer’s style, and (3) reassembling the parts sensi- S+ ° e = = ° F % . —

tively, using techniques drawn from natural language processing.
The first stage of this process is a critical element of the program. 5
There are a number of ways to analyze musical groupings for 0 o —— —r— 6]" £ Q__Zﬂ# -
hierarchical functions. One way is to employ traditional reductions of = :
harmonic function using what theorists call tonic, dominant, and so on,
or I (C triad in the key of C), V (G triad in the key of G), and so on.
Then, when recombinancy takes place, it could follow the form of a s 1,'4’ » » - - -
fixed sequence of functions and freely substitute the actual music that
the functions represent. Thereby, functions would remain intact in the
new work (and be in the same order as they were in the original work)
but could exchange music with other analyzed music of that same

f‘h
T‘N

30 EXPERIMENTS IN MUSICAL INTELLIGENCE
Figure 1.15 Random recombinant music and its
analysis. "A” here refers to figure 1.14A
and "B” to figure 1.14B; the numbers rep-
resent the location of the measure num-
ber and the beat number, respectively.
1 Ald A22 B7.1 Al4 2B86.1 A2.3 B1.2 B6.1
. -
s 1 _ie P o _io 2 : i_ji
{ n £ —® E T _t > = _I 1
D) | S—
£ - = === : =
‘i o= 7 =
3 4
\
Hile—Po - | s s ! e —
& e ;] , — . —
- £lle | ol, o £ A
2 ."- 2 -"- -{'. % —H T y m— ‘F_-h_! r ® . —
— ;[-‘l' - - i g
B5.1 A2.4 A43 B1.1 B1.2 B5.2 A22 A4l

function. The hierarchical analysis of such a process could be quite
deep. That is, fragments could be keyed by strata of information, suc.h
as cadence-tonic or tonic-6-incipient and so on, that would indicate their
original location and nuance of function. With a large number of wo.rks
for analysis, the program could have hundreds of different categories,
each with numerous musical subphrases to choose from such that
successive parts of the new work could be musically tied to the next
grouping and not just randomly chosen. One such subprogram of EMI
operates in just this manner (see Cope 1991b).

As an alternative to traditional harmonic analysis, however, I devel-
oped the SPEAC system in 1985 (a variation of which appears in Cope
1987), which provides methods for the abstraction of musical notgs
and harmonies on the basis of ideas derived from the work of Hein-
rich Schenker (1935). SPEAC is an acronym for statement (S), prepara-
tion (P), extension (E), antecedent (A), and consequent (C), each terr.n
roughly equaling its standard dictionary definition. SPEAC analysis
allows notes and chords to vary in meaning depending on context.

BACKGROUND AND OVERVIEW 31

Although the standard function of a C-E~G chord changes depending
on key (in C major this chord is tonic and in F major is dominant), in
SPEAC analysis the C-E-G chord may have different meanings within
the same key. For example, at the beginning of a phrase in C major,
C-E-G can be a statement, S, whereas in a cadence it can be a conse-
quent, C. Thus, whereas traditional functions provide information
about surface detail, the SPEAC system provides insight into the
deeper meaning of music. (For further information, see chapter 2 of
Computers and Musical Style [Cope 1991a] and chapter 2 of this book.)

Analysis for proper connectivity must also occur before the ele-
ments of the music are fragmented and mixed. This analysis can fall
into many categories, including melody, accompaniment, and har-
mony. Melodies that rise, for example, can be followed by falling
ones for balance. Accompaniments, otherwise a kind of pastiche of
various motives, can be made consistent so that they flow regularly
with the melodic line. Harmonies can have real voice leading in
the tonal common-practice sense, which includes measuring the
strength of chord functions so that stronger cadences can be saved
for the last chords of new works.

An example of such connectiveness can be found by making a
more intelligent analysis of the various beats of figures 1.14a and
1.14b as shown in figures 1.16a and 1.16b. Both of the Mozart
sonata examples shown in figure 1.14 begin on a tonic chord, or S
(statement), which can be interchanged successfully with the appli-
cation of musical transposition to the left hand of B1.1 (i.e. moving
it up one octave). Al.4 is dominant, or A (antecedent), in function
and can be substituted for the dominant, or A-function chord, of
B2.2 with no ill effects and no transposition necessary. Likewise,
the first half of measure 1 of figure 1.16a could be interchanged with
the first full measure of figure 1.16b with no substantive damage.
On the other hand, taking the second measure of figure 1.16b and
interchanging it with the first half of measure 1 of figure 1.16a
would cause serious problems. Not only do the functions not
match, but beginning the work on an unprepared dissonance is styl-
istically uncharacteristic.

As previously noted, certain harmonic functions can have different
SPEAC analyses depending on their location in a phrase and thus their
context. Here, the tonic chord in the first half of measure 1 of figure
1.16a is analyzed as an S (an initial statement), whereas the tonic
chord in the second half of measure 4 of figure 1.16a is analyzed as a C
(the consequent of the harmonic motion of the entire phrase). Note
also that the program can separate harmony and accompaniment
from melody (see the discussion of MATN in chapter 5). However,

BACKGROUND AND OVERVIEW 33
32 EXPERIMENTS IN MUSICAL INTELLIGENCE

. . Figure 1.16 continued.
Figure 1.16 A SPEAC analysis of: a) Mozart, Piano gure
Sonata (K. 283), second movement, mm. 5 6 . 8
1-4. b) Mozart, Piano Sonata (K. 330), third B
movement, mm. 9-16. 0o .oy » . *Eg_p . fe & o -
os—1 T T 1 1 1 1 = - r A —
o] 2 \.)V T 1 ;)
a) » F 1 f T
= : : et st Pt T e L 13
.)] T L I 1 1 T el T F P -l4 5 7 T
. — -
—— ., = oot c A P A A A
n H 1 1 I- 11 11 Il 1) r ; 1 1 1 11 : = t
oo g o o e—tetire o1 = i
r ¢ “ ¥ ¥
S S A A S P A A such separation occurs after the hierarchical function analysis so that
melodic groupings retain their harmonic implications. This order is
very important for the recombination process. Because music often
3 4 contains structural repetitions at various levels (i.e., within and be-
. ° — | b tween measures, etc.), EMI also analyzes the substructural repeats
0 = = o —P ! .
T = — } { 1 T

! in the original music. This analysis involves a pattern matcher not un-
o — —_— — i like the one about to be described for discovering signatures but hav-
ing a different function. This analysis pattern matcher informs the
recombination part of the program where internal (to the phrase)

repeats take place so that similar repeats can take place in the final
¥ I output. Once all the elements of the music have been analyzed, har-
- c A A c A c C monic functions of the same type are stored together in lexicons.

T

are

e

1 |

E APPROACHES TO PATTERN MATCHING

s g— = . ! Pattern matching (also known as pattern recognition) has long been
! . | — — i held as one of the premiere disciplines of artificial intelligence. In
— — fact, it is

H tempting to assert that the basic aim of all science is the recognition of

s patterns. Scientists study observed groups of variables, trying to isolate
and identify functional relationships—qualitative and quantitative. These
associations provide mathematical models which are in turn used to infer
objective properties of the process being modeled. (Bezdek 1981, p. vii)

[1

L1

| 18

[18
L1
118

[18
| 188

4
LAY
4
N
>
72KV
L YN
[
>
>

Pattern matching is used in fields as disparate as graphics imag-
ing, biology, DNA research, psychology, mathematics and statistics,
and linguistics (particularly in word and character recognition).

EXPERIMENTS IN MUSICAL INTELLIGENCE

Therefore, a history of pattern matching would have to encompass
each of these fields (and others as well) to be accurate and com-
plete. Obviously, such a history is not possible within the spa%ce of
this volume. However, the various approaches from discipline to
discipline have many similarities that present a good. point 'of de-
parture for defining pattern matching for researchers in music and
for EMI:

The term “pattern recognition” embraces such a vast and diversified lit-
erature that a definition of it always invites debate. Nonetheless, it is
pedagogically useful for us to begin by attempting to describe ?Nhat pat-
tern recognition entails. I think one can successfully defend a literal .
approach: quite simply, pattern recognition is a search for structure in

data. (Bezdek 1981, p. 1)

Pattern matchers have existed for years in a variety of useful
forms. For example, the grep command in UNIX (an acronym that
stands for “Get the Regular Expression and Print it”) is a very useful
and powerful pattern-matching function that finds text in a.ﬁle or
group of files. Standard grep-type commands often feature wildcard
symbols such as “?” for characters or “*" for folder names or f{le
names in path descriptions. These, along with searching for partial
words, combine to form a powerful word search pattern matcher.
The Search Files command in Macintosh Common LISP (the language
used to create the program on the CD-ROM accompanying this pook)
is a grep-type pattern matcher that searches through the indicated
(by path name) text-only files for words or parts of words.

The notion that two patterns can be considered similar enough to
match, even though they are different, is complex and nontrivial.
For example, one must determine which similarities are necessary
for a match. Conversely, the allowable differences making two pat-
terns not match must be clearly defined. To create pattern matchers
capable of discerning which similarities and differences. between
patterns are critical and which are unimportant or {ess 1m1?ortant
requires programs that can approximate rather than 51mpl.y'd1fferen-
tiate. The capability that computers add to pattern recognition

has stirred a concomitant interest in the notion of precision: precision in
nature, in the data we gather from nature, in our machine representation
of the data, in the models we construct from the data, in the inferences
we draw from the models, and, ultimately, in our philosophical percep-
tion of the idea itself. (Bezdek 1981, p. vii)

Pattern matching has also been a serious subject of study in
music (Simon and Kotovsky 1963; Simon and Sumner 1968). In a

BACKGROUND AND OVERVIEW 35

summary statement to their ground-breaking work with patterns in
music, Simon and Sumner state that

The pattern description language we have described may prove useful
both in psychology and in music theory. As a tool in psychology, it can be
used to try to arrive at an understanding of the cognitive activity of the
music listener. As a tool of music theory, it may be used to provide rigorous
descriptions of musical pattern as a prerequisite for the characterization
and comparison of style. In the more distant future, it may provide an inter-
esting basis, different from those employed heretofore, for experiments in
musical composition by computer. (Simon and Sumner 1968, p. 250)

Thus, in one brief paragraph they foreshadow work with pattern
matching in both musical style and composition.

Simon and Sumner were also among the first to describe a musi-
cal pattern matcher based on pattern induction, patterns of patterns
(compound patterns), and multidimensionality (melody, harmony,
and counterpoint). Their work covers the field from psychological
and perceptual concepts of musical patterns to algebraic formulas of
pattern frequencies and their representations. They also introduced
a pattern language that is an extension of a formalism previously
used to describe patterns in aptitude tests. For example, the Thur-
stone nonmusically related Letter Series Completion Test calls for
the completion of sequences such as ABM CDM . These inves-
tigations led to concepts of pattern periodicity, which seem as
applicable to music as they are to letter or number sequences.

The Humdrum Toolkit program (Huron 1993) uses a UNIX-based
grep-like program for pattern matching music. It finds patterns
of various types, including melodic patterns, metric positions of
dissonances, harmonic patterns, and key profiles in tonal music.
The program also conducts searches for specific or generalized
pitch contours and arbitrary combinations of parameters such as
rhythm, melody, and harmony. Unlike EMI and SARA, however, the
Humdrum Toolkit does not search for patterns independently of
user input; rather, one must know in advance what patterns, how-
ever vague, are being searched for.

Robert Rowe’s Cypher (Rowe 1993) is a composing tool that incor-
porates a string-matching algorithm. Based on the object-oriented
MAX programming environment, Cypher finds both melodic and har-
monic patterns. Pattern matching in Cypher involves two phrases:
the current phrase and the one immediately preceding it. Pattern
matches exceeding four (considered a successful local match) are
then matched against a larger, more global list of known patterns. If
the matched patterns again exceed four, the pattern successfully

36

EXPERIMENTS IN MUSICAL INTELLIGENCE

meets the criteria of the program. The pattern strength is then
increased, and the program continues to compose.

Compass (Mahling 1991), created at the Institut fiir Informatik in
Stuttgart, Germany, is built on Smalltalk-80, an object-oriented lan-
guage that originated at the Palo Alto Research Center. Compass
uses constant matching, an abstract pattern matcher. Found patterns
are used directly in the composition process. Abstract patterns rep-
resent diverse musical concepts such as voice leading, intervallic
pattern matching, and other useful musical techniques.

Metamuse (Iverson 1990) is a program that analyzes music by
breaking it into its constituent patterns and then reassembling these
patterns using hierarchical self-similarity. Metamuse uses auto-
catalytic theory, a chemical process of enzyme reproduction that, in
its musical form, creates chain reactions of similarly patterned music
into strings of patterns biased toward similar structures on various
levels and sublevels. The results, although limited to melodic lines,
are good examples of numerous current attempts to base computer
composition on natural phenomenon such as fractals. Unfortunately,
in Metamuse the style of the original music does not generally sur-
vive the process.

As noted earlier, most traditional pattern-matching programs
require that those using them know in advance what patterns are to
be matched. In contrast, EMI and SARA seek patterns without any
preconceived notion of their content. Also, pattern matching in EMI
and SARA must recognize not only when two patterns are exactly the
same (which is fairly trivial) but also when they are almost the same.
This almost must also be musical, for some patterns in music can
sound similar yet appear very different. Scientific pattern matching
often relies on probability and statistics, which are excellent ap-
proaches for complex systems to accomplish such tasks. By con-
trast, EMI employs a limited set of variables called controllers, which
affix musical parameters to vague outlines within which patterns are
accepted as viably recognizable. This notion of vagueness, described
further in chapter 3, enables EMI and SARA to compile patterns that
look numerically dissimilar but sound similar.

Controllers act like the widths of a grid through which patterns
are passed or not passed. If these controllers are resolved too nar-
rowly, the patterns that are one aspect of a composer’s style will not
pass. If these controllers are resolved too broadly, elements that are
not patterns identifying a composer’s style will be allowed to pass. If
these controllers are set correctly, only signatures will pass. Such
pattern matching allows us to detect previously heard patterns even
though the music may be new to our ears.

Figure 1.17

BACKGROUND AND OVERVIEW 37

Figure 1.17 shows an example of how the presence of signatures can
aid in style recognition. This example demonstrates Mozart’s typical
use of the Alberti bass, the repeated four-note structure in the left
hand. The right hand in this example demonstrates a more subtle
Mozart trait, namely, the leap to the lower chromatic nonharmonic
tones C# and Df from the second to the third beats of the first and the
second measures, respectively. The musical logic of the signatures in
figure 1.17 along with the harmonic progression and the melodic
sequence (the second measure being a transposed repetition of the
first, with one subtle variation) combine to create an elegant passage of
recognizable Mozartean craftsmanship. The constraints of his period
and the signatures of his personal style are both evident and abundant.

Imagine that these two measures of music have been found in dif-
ferent works of Mozart rather than in the same work and that a pat-
tern-matching program is attempting to determine whether they
constitute a signature. As it stands, it is improbable that a nonmusi-
cal pattern matcher would find the two measures of figure 1.17 very
similar except in rhythm. They have less than half their pitches in
common (i.e., [CCBCEC¢D] [D CiD F DE]), and none of these fall
in the same location. The second measure has less notes than the
first, but, to our trained ears, these are easily identifiable as simple
variations of the same pattern.

What is needed is a musical pattern matcher that can make the
patterns appear more similar. One way EMI and SARA accomplish
this is by reducing pitch representations to intervals. This means cal-
culating the distances between notes in the patterns in half steps.
This gives [0-1 1 4 -3 1] for the first measure and /-1 1 3-2 1] for the
second measure. Note how the interval sets now show the similarity
of the two patterns in both direction and amount of motion.

Mozart, Piano Sonata (K. 279), first
movement, mm. 5-6.

leap to chromatic

o
ﬂ 4 b A e H
L £ 1 1 J i L L T 1 I'/ r i
L ! ¥ H—"i 1

[10E

Alberti bass

38

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.18

Discounting unisons and using a single controller (one that deter-
mines accuracy) proves the patterns to be musically similar enough to
be a signature. Allowing, for example, any interval to be off by just a
half step in either direction indicates the musical similarity of the pat-
terns. This is very common in tonal music, where composers, to
remain within a diatonic framework when sequencing, often substitute
whole steps for half steps and vice versa. Thus, an allowance for these
variations helps the pattern matcher find the musical similarities.

Defining a logical sample size is also an important matter. In
Mozart's and Haydn’s Musikalisches Wiirfelspiel (discussed earlier in
this chapter), each “sample” is usually a measure in length and begins
and ends in ways that allow for successful connectivity with other
measures in a newly created work. Discovering the proper length for
“samples” in the more complex recombinant process undertaken by
EMI and SARA is more difficult. One way of determining sample size
involves pattern matching as described in Computers and Musical
Style (Cope 1991a; see particularly chapter 2, p. 46).

Figure 1.18 shows the same two phrases from Mozart sonatas
given in figure 1.14 with signatures shown in boxes. The harmonic
signature is indicated by S, AM stands for accompaniment motives
and MM for melodic motives. These latter two matching elements
comprise a pattern-matching subprogram that provides information
about the dominating melodic and accompaniment models to the
analysis portion of the program. The cadential signature in figure
1.18b will be discussed further in chapter 3 (see figure 3.1 and the
section “A Sample Pattern-Matching Session™).

The two musical examples in figure 1.18 have very much in com-
mon. This is critical to the pattern-matching process just described.
The music chosen for EMI and SARA must be reasonably similar. This
includes meter, key, and especially the predominant duration, which
is particularly important. For example, imagine a work written first
in quarter notes with the metronome set to 60 (one quarter note per
second) and then rewritten in eighth notes with the metronome at 30
(one quarter note per two seconds or one eighth note per second).
Performances of both versions would sound basically the same yet
the scores would look and analyze very differently, particularly if the
program being used assumes that certain beat constraints are in
effect. Thus, entered music must be coerced to look the same in both

Some characteristics of: a) Mozart, Piano
Sonata (K. 283), second movement, 1-4.
b) Mozart, Piano Sonata (K. 330), third
movement, mm. 9-16.

BACKGROUND AND OVERVIEW 39

qa. MM ,

] Eﬁ e
g —r—F =

:?I]] T —— } !

. -
e e e oy, @ __ T
ld‘::“':‘:diﬁ—é;éié ld.:"l = - i —
= 3 ===
AM AM
4
0> . L T
» > » 4
, : e —] —
. ! I —
.
»- »- - " , i - _T'- F%\
o rL7 $— —T——¢— :i o F } v A
AM Signature
b MM 9
3 4

:
H
I
[l
li

e

;&

11

[1§

@]
[1A
"
ol
[Y
¢
Q]

AM Signature

40

EXPERIMENTS IN MUSICAL INTELLIGENCE

musical and numerical notations (for more information, see “Clarify-
ing the Data” in chapter 2).

Ultimately, if a recombinant compositional process is to be success-
ful, it must ensure that signatures survive the recombinative pro-
cess in some recognizable form and in an appropriate context. This
requires that the program controlling the deconstruction of, for exam-
ple, the original Mozart determine the appropriate size of the sig-
natures as well as recognize the signatures themselves. The recom-
bination of signatures with nonsignatures must also be contextually
sensitive. Signatures are location-dependent and must be immutable to
the extent that all intervallic relationships remain intact. However, they
must also be transposable so that they reconnect in a variety of logical
and musical ways and in various different keys.

Once EMI and SARA discover signatures, these signatures are frozen
to their location and then protected from recomposition. Without this
protection, signatures would get lost in a Pandora’s box of confused
musical ideas. Once signatures are frozen, the remainder of the music
can be fragmented fairly freely in terms of size as, at this stage, the idea
is to create a new instance of the composer’s style, that cannot be rec-
ognized as one of the individual works used for recombination.

® AUGMENTED TRANSITION NETWORKS

Augmented transition networks (ATNs) offer excellent advantages
for the sophisticated analysis and generation of natural languages
and subsequently (as in the case of EMI and SARA) of music, partic-
ularly for the logic required for the reassembly of recombinant
music. These networks were first formulated by researchers in nat-
ural language processing (NLP), a branch of both linguistics and
computer science.

Natural languages are the spoken and written languages (e.g.,
English, French, and Chinese) that humans have used for thousands
of years. Natural languages are rich and complex, the result of count-
less negotiations within and between cultures over those same thou-
sands of years. Researchers in NLP attempt to study and reproduce
such natural languages on computers. Natural language processing is
important because it can provide insights into natural language ori-
gins, uses, and variations and because it will eventually allow hu-
mans to converse more naturally with computers.

Natural language communication with computers continues to
develop as computers become more sophisticated, faster, and more

Figure 1.19

BACKGROUND AND OVERVIEW 41

user-friendly. Joseph Weizenbaum’s ELIZA (1966), one of the first
attempts to create dialogue-capable programs, responds to input
with often credible statements and questions. Figure 1.19 shows a
sample session with ELIZA, a simple program mimicking the conver-
sational abilities of a nondirective psychologist. ELIZA keys on cer-
tain words that it finds in its database. These key words then initiate
responses such as those shown in figure 1.19. Initial sessions with
ELIZA give the impression that one is conversing with a conscious
entity. However, protracted use quickly dispels such a notion as
responses become predictable and, eventually, even irritating. None-
theless, ELIZA's simplicity and conversational approach provide a
useful introduction to the goals of NLP. Thus, implementations in
LISP and other artificial intelligence-linked languages are often pack-
aged with ELIZA modules.

A sampie session with the computer
program ELIZA.

Eliza: May I help you?

User: Yes.

Eliza: How may I help you?

User: Answer a few questions for me.

Eliza: Are we talking about you?

User: No we are talking about questions.
Eliza: What questions do you wish to ask?
User: Who are you?

Eliza: Does that question really interest you?
User: No.

Eliza: Are you just saying no to be negative?
User: Must you always answer questions with questions?

Eliza: Does that question really interest you?

42

EXPERIMENTS IN MUSICAL INTELLIGENCE

Another important landmark of NLP was SHRDLU (Winograd
1972). This program, written in LISP, demonstrated that computer
programs were capable of understanding natural languages. However
simplistically SHRDLU accomplished its tasks, it was able to interpret
questions, statements, and commands; draw inferences; explain its
actions; and, more importantly, learn new words. SHRDLU, a robot as
well as a program, was capable of picking up and stacking blocks of
various colors and responding to queries about their presence and
location. The following is a brief conversation between a user (bold-
face) and SHRDLU:

put the blue pyramid on the block in the box. ok. is there anything
which is bigger than every pyramid but is not as wide as the thing that
supports it? yes, the blue block. does a steeple sorry, I don't know the
word “steeple.” a “steeple” is a stack which contains two green cubes
and a pyramid. | understand. are there steeples now? no. build one. ok.
(Winograd 1972, pp. 14-15)

Finite state transition networks (FSTNs) represent another criti-
cal evolutionary step in NLP. These networks can best be diagramed
through a series of arcs, with arrows representing program flow. Fig-
ure 1.20 is a simple FSTN. Here, Gertrude Stein’s “A rose is a rose is
a rose” is defined with flow moving left to right, except when an arc
doubles back to initiate a recursive call to an earlier node. This flow
could be described with the following text:

Figure 1.20 A finite state transition network (FSTN).

a rose

BACKGROUND AND OVERVIEW 43

initial 1

final 3
from1lto2bya
from 2 to 3 by rose
from 3 to 1 by is

with 3 to 1 referring to a backtracking directional arc. Thus, “A rose
is a rose,” “A rose is a rose is a rose,” and so on are legitimate real-
izations of this figure. Representing such diagrams with explicit tex-
tual descriptions like the one above is useful for translating them
into code. An FSTN could also be diagrammed with word types (e.g.,
nouns and verbs) so that “A car is a car” could be recognized or
generated. This produces a more abstract network applicable to a
wider variety of sentences. Such a net is similar to the ground plan
of a Musikalisches Wiirfelspiel: word types substitute for harmonic
function and the musical repeat sign parallels the role of 3 to 1.
Thus, we can see that, even from the limited perspective of an FSTN,
networks can have useful musical applications.

Finite state transition networks are one of the simplest computing
programs for NLP, and their code can be small, fast, and effective.
Therefore, FSTNs are powerful tools that should be used whenever
they can adequately solve a given problem. Such use includes the
recognition of finite languages and the simple translation of one lan-
guage into another. Unfortunately, FSTNs fail when these languages
allow an unlimited number of embedded structures. Such languages
are called nonfinite languages. For example, a single FSTN could not
recognize sentences that differ in terms of subphrases such as “The
cup is full” and “The cup is full of water.” A separate network would
have to be built for each sentence, an extravagant price to pay for
the analysis of relatively simple sentence constructions.

Nonfinite languages require the use of recursive transition
networks (RTNs). Both FSTNs and RTNs are examples of transition
networks (TNs). Recursive transition networks allow for embedded
structures so that arcs may move between self-contained subnet-
works. Thus, sentence subphrases may replace individual words.
Figure 1.21 shows an example of an RTN with its subnetwork sepa-
rated from the main structure. Note that this RTN is context free; it
contains no actual words but rather representations for words, such
as verbs (V), noun phrases (NP), verb phrases (VP), proper nouns
(PN), and WH words like “who,” “what,” “where,” and so on. The
RTN shown in figure 1.21 could recognize the following sentences:
“George eats cheese” (1-2-3-4) or “George, who eats cheese, is a
mouse” (1-2-1-2-3-4-2-3-4) or “Who is George, when George eats

a4 EXPERIMENTS IN MUSICAL INTELLIGENCE

NP network

Figure 1.21

N

A recursive transition network (RTN).

P Vv NP

WH

cheese” (1-2-3-1-2-1-2-1-2-3-4) and so on. However, neither an
FSTN nor an RTN could recognize “The cheese was eaten by George”
because this requires a transformational process. To accomplish
such recognition, researchers in NLP use ATNs (augmented transi-
tion networks) which represent a transformational variation of
RTNs. Augmented transition networks allow for output language to
occur correctly but differently. Registers, or nodes where text, gen-
der, and so on are stored, provide an opportunity to test elements in
complex circumstances with the results being “built in a flexible
order” (Gazdar and Mellish 1989, p. 108). William Woods adds that
an ATN is a “recursive transition network which is capable of per-
forming the equivalent of transformational recognition without the
need for a separate transformational component and which meets
some of the objections that have been raised against the traditional
model of transformational grammar” (Woods 1970, p. 592).

BACKGROUND AND OVERVIEW 45

Augmented transition networks were originally designed by nat-
ural language researchers to create computer interfaces that commu-
nicated easily and without redundancy. The ability of ATNs to recog-
nize sentences such as “Jacob told Mary” as well as “Mary was told
by Jacob” with the same parsing algorithm greatly enhances NLP pro-
grams. Augmented transition networks are similar to FSTNs in that
they can be diagrammed using arcs and nodes and are often recur-
sive. They differ from FSTNs in that they have registers associated
with arcs and nodes that determine routes on the basis of conditions
of those registers (ATNs will be discussed more fully in chapter 5).

In EMI and SARA, ATNs initially take the form of measure organiz-
ers. They first take a set of functions from the analysis of one of the
works or phrases being used. For example, one possible analysis of
figure 1.14a could be S-alberti-60-major-duple, S-6-alberti-60-major-
duple, and so on. EMI then uses this progression or other extrapo-
lated progressions as templates for creating new works by substitut-
ing applicable measures of music from collections of similar measures
stored previously by the analysis portion of the program. For exam-
ple, the same S-alberti-60-major-duple given above could logically be
chosen as the first measure of a new work. This might be followed by
another version of an S-6-alberti-60-major-duple second measure
based on connectivity allowed by the local register of the ATN. EMI
could even choose the same S-60-alberti-6-major-duple as the one that
originally followed the first choice. Of course, the chance of that hap-
pening depends on the amount of analyzed music available (i.e., the
larger the amount, the greater the chance for variety).

Resultant phrases may also be embellished in ways similar to those
described in Kirnberger's Methode Sonaten aus’m Ermel zu schiiddeln
(1783) as well as having inner repeats of motives. As will be seen, EMI
is also capable of projecting ATNs through the larger processes of
phrase and form building. The creation of simple forms stems from a
combination of analysis of music stored in databases and coded rules.
Larger forms—such as multiphrased binary and ternary song forms
and even more sophisticated forms such as sonata allegro, rondo, and
fugue—result principally from coded rules.

Combining the concepts of hierarchical analysis, pattern match-
ing, and ATN yields a process that can create new examples of music
in a given style. Figure 1.22 shows an actual machine replication and
one possible analysis that led to this replication (based on figure
1.16). The program itself is sufficiently complicated to make the
determination of the actual sources difficult at best. Note here how
the results are logical and, to a degree, even musical. The open-
ing, first-measure melody seems balanced in direction with the two

46 EXPERIMENTS IN MUSICAL INTELLIGENCE BACKGROUND AND OVERVIEW 47

Figure 1.22 An EMI recombination with signature and Figure 1.23 The beginning of an EMI-Mozart sonata
Qa suggested analysis. The superscript “t” movement.
refers to transposition.
s oY
) = rop Pt PP 4o o SET-LEee
1 B1.1 All B1.1" AlL4 All B1.1! Al4 Y — e e e e I : —
A — i I —
ﬁh. e—rro —r—rr 1:‘_'_____'5:’
—"E — 2 } - y —— —
SESE= f —] —— — !
5 s 2 ¥ : = ' —
] 1)| 1 1 1 t)i ;F
&k e e egeae oSO FE L
© L gfee eLre, Vape
Al.l B1]’ ﬁ T g;‘ |‘ T — | 1] '|'- |.) 1 T T -I'- |. T T 1 -|'- l‘_'—
D)
2t P | traswsueirle =
= —=—] = e ——— NP T — T _S—
| r2d S s = ——
I
" | N
.V.,.,.,ul",'i,‘;,‘ ﬁ==r—‘l=1=ﬁt—vnﬁt
D) = - .
L TTvs el b freere ErEfee £Ffe..
Mea. 1 A2.3 B7.1 3%) e e ' — — =
two-beat groupings acting in typical Classical-era antecedent/conse-
. ! » | — h’ » o P 1 » !
quent motion. The cadential signature in the final measure is partic- 2: | !' : = 1 ! } == :] :
ularly effective and, as mentioned earlier, is a legitimate signal of the o I o
composer’s style. In typical fashion, this signature is just over two
beats in length. Transposition here is fairly routine. Note how the
cas : . s oas aas 15 h . F
repetition of bar 1 in bar 3 helps contribute to stylistic recognition. _ (o i _ P
In EMI this kind of repetition is based on the previously discussed e e e s s ——— : :] 3
analysis of repetitions found in the original music. D) !
The signature presented in figure 1.17, that of the lower chro- - - - -
matic neighboring tone, appears in the recombinant example shown . f » -F = F = -F » F = F = F
in figure 1.23, measures 2 and 4, an EMI-composed theme in the style s . - . — {F = et et
T l * hd

of Mozart. This beginning of a sonata movement is sparse (mostly
two voices) and simple (mostly scales), yet it has many Mozartean
traits. For example, the harmonic functions follow the straight-
forward orders typical of Mozart’s time. Also, the harmonic rhythm
moves mostly by measure (typical of Mozart’s style in third move-
ment rondo form, the music used in the database for the creation of
this example). This music is the result of hierarchical analysis, pat-
tern matching, and ATN recombination of all the third movements of

EXPERIMENTS IN MUSICAL INTELLIGENCE

his sonatas and demonstrates his subtle implied harmonies and voic-
ing. By the time all the computational processes have taken place, it
is almost impossible, save for the obvious signatures, to identify the
origin of each element. The form (i.e., the amount and location of
phrase repetition and contrast) was prescribed by the code and the
key choice was chosen by random processes. However, the impor-
tant ideas, signatures, and harmonic protocol were formed com-
pletely by the recombinant processes thus far described.

Figure 1.24 provides a good example of EMI output for complete
works and directly relates to the code for creating inventions pre-
sented in chapter 4 of Computers and Musical Style (Cope 1991a).
This invention, arguably in the style of Bach, represents an example
of the imitative style of inventions and demonstrates how EMI uses
an interlocking approach to inheritance (from databases) and rules
for creating new works in given styles. Inheritance is clearly from
Bach’s Invention 9 (see figure 1.25) in both key, the first six notes of
the melody, and two notes of the left-hand counterpoint. Interest-
ingly, Bach’s Invention 9 is a variation of his own Invention 7, shown
in figure 1.26, though the keys are different and the rhythm and met-
ric placement have changed. The invention rules in EMI circumvent
exact inheritance (in this case of Invention 9) by requiring immedi-
ate imitation in the lower-voice counterpoint, an imitation not found
so exactly in the Bach example (figure 1.25).

Inventions (and contrapuntal forms in general) seem aptly suited
to computer generation. These kind of local formalisms do not typi-
cally demand the larger structural attention that, say, sonata allegro
and other homophonic forms require. The variations created by the
program, such as ignoring the tied note initially and then centering
on it (see measures 5 through 10 and later of the EMI imitation in fig-
ure 1.24), are welcome aberrations that infuse EMI output with a
kind of nonimitative vigor similar to that which seems to have
sparked the originals. As we will see in the ensuing chapters, suc-
cessful computer composition and imitation of style require an
interplay between the various components of large programs and
their databases. This interplay performs best when imitating the
very process used by the composer whose works reside in the data-
bases EMI uses as models.

BACKGROUND AND OVERVIEW 49

Figure 1.24 An EMI-Bach Invention.

J=60

i r———r > =i E s ===
; = A== SR e
4} ||5
R : P 2 .
S S e sr=Emie ==
e T

q
L1
ol

—t '/\lc_'lth"ﬁ‘s fh#' » 'P"P'T'"P"P"P‘ Y
e EE&%:

50 EXPERIMENTS IN MUSICAL INTELLIGENCE BACKGROUND AND OVERVIEW 51

Figure 1.24 continued. Figure 1.24 continued.

52

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 1.25 The beginning of Bach Invention no.9.

—— T
} T

!
;
;

———

S=sisa %‘

il

P : _‘F_%
Te

Figure 1.26 The beginning of Bach Invention no. 7.

M A g £ o W,
[) 1 T 1 4B . - { H; 1 i . ’_. =
5 t— ——
AV
= =_S=S= == e —
' o £
)
>
T Plete , o, |» £ o

TWO

The Analysis
Component

The EMI and SARA analysis components constitute the first program
element that entered music encounters. The analysis component
prepares music for composition and, indirectly, for pattern matching.
Such analysis stores segments of music as objects in the database in
the various lexicons necessary for attaching incipient (pickup fig-
ures) and cadential gestures to newly composed music. Although the
analysis component is not a formal element of the compositional
process, it is a crucial part of the overall compositional system. In
fact, in early versions of EMI, music was analyzed during the compo-
sitional process. However, the redundancy of reanalyzing music for
each compositional run proved restrictive and time consuming.
Reading through a typical database (e.g., figure 4.11) will quickly con-
vince you of the importance of analysis in EMI's and SARA’s composi-
tion strategy.

The EMI and SARA analysis programs determine the boundaries
and identities of potentially independent segments of music. Such
analysis is critical to the success of a program that attempts to con-
struct Musikalisches Wiirfelspiel from works that were not intended to
be such. If segmenting occurs at too large an increment, one may rec-
ognize elements of the originating databases in the output. If segment-
ing occurs at too small an increment, output can sound disheveled
and pastiche-like.

Analysis in EMI and SARA takes place on many levels and in a
variety of areas. First, the analysis program is responsible for seg-
menting the music into measure-sized lengths (automatic in EMI,
user-controlled in SARA). This involves resetting onset times as if
each segment were the beginning of a work, which may ultimately

583

54 EXPERIMENTS IN MUSICAL INTELLIGENCE

m DATABASES

be the case. It also involves determining which notes fall on which
side of a segment demarcation. Such decisions must be made intelli-
gently, or output may contain two notes of fractional durations
rather than a single note as in the original music. Second, EMI and
SARA analyze the objects in the database using beat-to-beat SPEAC
functions (see “Harmonic Analysis” below) as well as aspects of
melody, form, and ATN (see chapter 5) connectivity. Third, EMI and
SARA analyze and store incipient and cadential measures for special
storage in lexicons and treatment during recomposition. Finally, EMI
and SARA create appropriate lexicons for storing music of similar
function. Although this aspect of the program does not constitute
analysis per se, it ultimately makes composing possible.

Selecting, entering, and editing databases are among the most criti-
cal elements of creating viable new music in EMI and SARA. Almost
all unsuccessful attempts at machine composition with these pro-
grams can be traced to poor databases rather than poor code.
Expertly created and honed databases become wellsprings for a
nearly endless supply of new, interesting works. Poorly created
databases can make the results of even the very best code sound
amateurish and even comical.

Selecting music with a perceived commonality of style is para-
mount to creating a viable database. This is often quite difficult. In
some cases, one can misconstrue style as familiarity with often-
heard works. In other words, specific themes and harmonic progres-
sions are recognized rather than an actual style. In other cases, a
style can be so broad that it identifies dozens of composers rather
than a single composer. Choosing works which share a common and
distinct style ensures at least a successful beginning to the replicat-
ing process.

One way to determine whether a certain composer’s music has a
perceivable style is to imagine recognizing a yet unheard work in
that style. If such recognition depends on pitch and rhythm signa-
tures, then EMI and SARA will probably be good at re-creating new
works in that style. If only full-melody recognition or performance
qualities (the sound of a particular ensemble) indicate style, then
EMI and SARA probably will not be able to successfully imitate that
style. Style often resides in orchestration (timbre), texture, lyrics,

THE ANALYSIS COMPONENT 55

and so on, which are now only partially utilized by EMI and SARA.
Choosing the appropriate timbral output can greatly enhance the
perceived success of EMI and SARA. However, the use of certain
lyrics or the familiarity of a performer’s personal style is beyond the
capabilities of either program.

Entering music into a database requires three separate but re-
lated steps. First, one must ensure that the data is mistake free.
Playing and replaying databases as they are entered and cross-
checking such performances against the original music is necessary
to guarantee such correctness. Second, databases must be properly
channelized; that is, data destined for separate timbres must be
assigned separate MIDI channels for correct playback and pattern
matching. One must often be able to accurately discern several
channels per staff and several staves per work to accomplish this
translation. Finally, metrical equivalencies must be observed. This
means that duple meters such as %, , § and so on must be carefully
assigned to the same duple meter. This is a skill that must be devel-
oped. A further explanation follows.

In figure 2.1a, the movement is by eighth note. In figure 2.1b, the
music moves by sixteenth note. It is imperative that one of the two
examples be altered to account for this difference. Otherwise, the
output will exaggerate the apparent discrepancies between the two
examples. Figure 2.2 demonstrates how the different rhythmic nota-
tions of the left-hand figurations of figure 2.1 might conflict during
recombinancy. The examples here have been transposed to C major
and follow a typical implied harmonic pattern. Note, however, how
the speed of the Alberti-style bass appears to shift dramatically and
without regard to style. In fact, such a simple conflict can cause
immediate style contradictions even when, as in this case, only one
voice (left-hand accompaniment) is involved. Without great care
being taken by both the user when inputting music and the program
when analyzing music, compositional output becomes trivial. Find-
ing a common rhythmic dimension for databases containing music
from different movements and works is a critical element in creating
successful recombinant examples.

Figure 2.3 shows the two ways in which equivalency can be
obtained. In figure 2.3a, the measures of figure 2.1a have been
halved in duration to match the tactus of figure 2.1b. Figure 2.3b
shows the reverse. Either case can effectively accomplish metric
equivalency. This kind of alteration must be consistently adhered to
for all the music of a given database. Note that this procedure is the
first step toward clarifying the data, a subject that will receive a
more detailed explanation shortly.

Figure 2.1 Mozart's sonatas: a) K. 545, first
movement, mm. 1-2. b) K. 332, second
movement,m. 1.

9 Allegro
[a)
s S A——
y I) 1 —5
ot : : P e
O] ' i ——
£ pam——__ | pmp—__
(’ ‘I ! ‘l ‘|)] 1 1 1 1 1] 1 1
ey C—— e ¢ —
- - = r

Figure 2.2 Confiicting rhythmic notations of figure 2.1
during recombinancy.

Figure 2.3 The music of figure 2.1 clarified
rhythmically in two different ways.

b.

fa) 1 o)
e e
e 1 i 4&; i | Y 1 : <
Oyt 19 o T4 T — — i — — = —
DEE 2 et & - & el pu -~ =

Database Format

THE ANALYSIS COMPONENT 57

Databases must also have a common key and mode: for simplic-
ity, the key of C major. This is as true of phrases that conform to the
key signature of a work as it is of those that have modulated to
another key without altering the key signature. EMI and SARA can
make such changes automatically but not without some risk, as
even the most intelligent code occasionally loses its place, espe-
cially in highly chromatic music. Indicating the key of entered music
makes database creation much more error free.

Nontonal music may be entered without regard to key. However,
it should be noted that nontonal music sometimes requires redefi-
nition of SPEAC symbols and other program variables. However, |
have successfully entered and replicated Cope-style music on
numerous occasions without making a single alteration to the pro-
gram other than those normally associated with database entry
and pattern matching.

Choice of method of storing music in a database depends on how
such databases will be used for composition and for performance.
Optimally, databases need to respond reliably to the requirements
of a program and not require unnecessary translation to different
formats. This means, at least for the applications described here,
that data should respond to analysis, pattern matching, composi-
tion, and MIDI performance. EMI and SARA use what I call events for
this purpose. Events describe the various attributes of each note
with a single list of parameters of five separate but related elements.
Figure 2.4 shows an example event as it would appear in an EMI or a
SARA database.

The first element of the event list (or zero in figure 2.4) is the on-
time. It is listed first because it is the most often referenced piece of
data in the list. On-times of notes must constantly be refigured
because the very nature of the recombinant approach requires that
measures be reordered and the resulting on-times recalculated for
performance. On-times are computed at 1,000 ticks per second, usu-
ally equated to a quarter note’s duration. Relative values of half
notes (2,000 ticks), eighth notes (500 ticks), and so on are computed
from this standard. Triplet eighth notes are figured at 333 ticks with
one of the three notes listed at 334 ticks to total 1,000 or with all
three at 333 ticks; the loss of 1 tick per 1,000 is considered unimpor-
tant. On-times can reach quite large numbers. However, dividing by
1,000 makes computations fairly simple. On-times are relative, not
absolute. As with printed music, the actual on-time of a pitch is

58

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.4 An event in EM! or SARA.

(0 72 1000 1 100)

determined by a combination of on-time (location in the score) and
tempo. For example, an on-time of 1,000 could begin (1) one second
after zero with a tempo of M.M. 60, (2) two seconds after zero with a
tempo of M.M. 30, (3) half a second after zero witha tempo of M.M.
120, and so on.

The second entry of the event list (or 72 in figure 2.4) represents
pitch. It is figured from the MIDI standard with middle C equal to
MIDI note number 60; additions and subtractions of 12 produce C in
various octaves, and additions and subtractions of 1 create half
steps. Thus, 60-62-64-65-67-69-71-72 is the C major scale with
intervening numbers producing chromaticism to that key. The ac-
companying CD-ROM has a note equivalency chart that is useful for
converting MIDI note numbers to their note names. Events describe
only notes (note ons and note offs) and not rests, relieving databases
of vast amounts of unnecessary data. Rests occur naturally as the
result of a lack of events. Not all systems function in this manner.
Systems that use standard musical notation, for example, must sig-
nify rests because all measures must be complete. Other systems
require rests to signal channel presence for internal clocks or other
timing devices. For nearly a decade, EMI had such a channel/clock
structure, which required that all channels have a continuous data
stream whether notes were present or not (an approach that seems
logical to a performing musician). Events, on the other hand, simply
signify the presence of notes, and rests are implied by the absence
of events. Events therefore provide an optimum means for data stor-
age and retrieval.

The third entry of the event list (or 1,000 in figure 2.4) represents
duration. Duration, as with on-time, is calculated with a quarter note
equaling 1,000 ticks; relative durations are figured from that stan-
dard. The duration of an event contains the MIDI note off-time,
which can be determined by the addition of the on-time plus the
duration. Thus, an event with an on-time of 6,000 and a duration of
1,000 has an off-time of 7,000. Such information can be important to
the EMI and SARA analysis systems when events straddle proposed
measure subdivisions. Duration information can also be contra-
dicted by choice of timbre in the MIDI output device. For example,
performing a note of long duration with a sound of short duration
(or vice versa) can nullify much of the durational aspects of the pro-

Clarifying
the Data

THE ANALYSIS COMPONENT 59

gram’s output. Duration, as with on-times, is relative, being a factor
of its value within the current tempo.

The fourth entry of the event list (or 1 in figure 2.4) represents
channel number (1 to 16). Channel numbers indicate the MIDI chan-
nel on which events are scheduled for performance. Ultimately,
channels provide access to synthesizer and sampler timbre selec-
tions via MIDI interfaces. Channels may be assigned various roles in
the MIDI instrument that is chosen for performance. The channel
numbers stored in the database are intended to indicate the original
voice separation of the music entered into that database.

The fifth entry of the event list (or 100 in figure 2.4) represents
dynamics. Dynamics are based on 0 equaling silence and 127 equal-
ing fortissimo, with the numbers between these values being rela-
tive to these extremes. Aftertouch, tremolo, filter shaping, and so on
are considered post-MIDI controls in SARA and therefore are left to
hardware/software combinations in the synthesizer/sampler stage
of performance. Dynamics in EMI and SARA are relative in that they
can be enhanced or contradicted by gain controls in amplifiers in
the various playback hardware connected to the MIDI interface.

It should be noted that events are open ended; that is, one may add
any desired parameter to the end of event lists with no ill effects on
the first five elements. For example, a sixth position in some events
may be occupied by an asterisk indicating that the event has been
transposed during composition. This asterisk creates transposed sec-
tions and plays no other role in performance.

Events occur in larger phrase/work lists and do not occur indepen-
dently in databases. Thus, because works can often be quite long,
finding a given event may be difficult. The best method for locating
events is by searching for on-times. Events are typically ordered
sequentially to save time and make reading the event list easier.

EMI provides options to clarify data manually or automatically.
SARA, however, requires users to manually clarify data to ensure
that they have absolute control over the input music used for com-
position. SARA requires varying degrees of clarification for music to
be properly stored as databases for composition. This clarification
demands aural and computational skills beyond those of style
detection and data entry.

Clarifying databases results in consistent output otherwise ren-
dered haphazard by the vagaries of musical texture and notation.
Figures 2.1 and 2.3 showed two versions of phrases by Mozart and

60

EXPERIMENTS IN MUSICAL INTELLIGENCE

how important it is that databases use the same tactus. This is a
form of data clarification. It is also important to group phrases of
the same meter type (i.e., triple, duple, etc.) together. In fact, EMI
and SARA require that phrases of a particular metric type be placed
in databases of that particular metric type (see chapter 4). As previ-
ously mentioned, such consistency also applies to key and mode,
with C major being the preferred choice.

Ornaments such as trills, mordents, grace notes, and turns pro-
vide immediate indicators of certain musical styles and, as such,
seem critical to the composing process. Unfortunately, leaving such
details in coded music causes more problems than their retention
enhances. This is similar to the problems that nonharmonic tones
cause for harmonic analysis. The areas where ornaments create
problems include (1) pattern matching, where the multitude of often
extraneous notes can cause serious signature misinterpretations;
(2) database recognition, where such distinguishing figures directly
indicate their origins; and (3) functional analysis where such extra
notes can cause problems. In some cases, such as pattern matching
and analysis, special software filters can restrict program recognition
to notes at or above a certain duration. Also, large databases can
sometimes prevent ornaments from potential recognition because it
is presumed that such a database would contain many instances of
ornaments, some being subtle variants of others. Regardless, most of
the databases coded for SARA do not contain ornaments. When out-
put does require such figures, they can be added according to the
performance practice of the period in which the composer lived.

The fact that EMI and SARA do not use ornamental figuration dur-
ing composition remains one of their most controversial limitations.
Whereas I favor a few tastefully added ornaments to the computer-
finished product, some view this as tampering or insist that the
original ornaments provide grist for interesting musicological and
theoretical study. Regardless of the pros and cons of their inclusion,
ornaments may be added to extant databases and/or included in
user-created databases with duration subtracted from a previous or
succeeding note.

Clarifying data also enhances the program’s ability to compose
effectively by ensuring that deconstructed musical fragments will cre-
ate a multitude of choices for musical recombinancy. Data left unclari-
fied will often have such unique characteristics as to almost guaran-
tee that only the music that previously preceded and/or followed a
particular fragment will do so again during recombination. Thus,
unclarified databases often create instances of their former selves
rather than new examples of music in their former styles.

THE ANALYSIS COMPONENT 61

Figures 2.5a and 2.5b show the opening measures of two of
Mozart’s piano sonatas. These phrases have different keys, modes
(major or minor), rhythms (triplets in one and ties in the other), tex-
tures (3 to 5 notes in one and 3 in the other), and ranges. Maintain-
ing the difference between these two phrases contributes to chaos
in the resulting process of recombination or creates a repetition of
one of the phrases as output. However, clarifying the data during
the coding process will enhance the possibilities that the resulting
output will be consistent, logical, and new.

Although some steadfastly maintain that the choice of key and
mode are serious elements of composition, both EMI and SARA treat
these attributes as superficial aspects of composition, leaving them
to user choice in the output stage of the programs. Although key
choice certainly has significant performance implications (e.g., one
key being easier to perform than another on a given instrument) and
thus can be a factor in composition, especially for composers who
write through improvisation or in similarly tactile ways, such con-
sideration is currently beyond the scope of SARA. Mode choice, on
the other hand, can easily be considered integral to the composing
process, and although SARA does not currently invoke special code
for major versus minor keys (EMI does), the object system used (as
will be seen in chapter 4) allows for storage and reapplication of
such information during composition.

Rhythms are unique to the ideas expressed in composition and
thus are difficult to alter or clarify without damaging the integrity
of, among other things, the style of the composer. Ties, however,
especially when they cross bar lines and thus fall out of the data of a
single object in the database, must be altered. Ties become repeated
notes in these circumstances. Ties internal to defined measures can
remain intact and continue to provide essential information about
style, such as syncopation. Ties that have been factored out of the
stored databases may be returned at appropriate junctures in the
final output by a user-controlled variable in the performance section
of the user interface.

Tonal music often requires only three or four notes for defining
function, so the doublings of notes can be removed to clarify texture.
Conversely, notes may be doubled at the octave for the same reason.
Such additions usually fulfill certain implied textural conditions of
the original music. Added notes often maintain consistent textures at
times when composers extracted notes because of fingering problems
or other performance conflicts. Such additions give the stored music
more opportunities for recombination during composition because
textures of similar density find more suitable connections than those

62 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.5 The first measures of the first movements
of Mozart’s sonatas: a) K.281 and b) K.
282.
Allegro
ir e — 3

THE ANALYSIS COMPONENT 63

Figure 2.6 Clarified versions of Mozart’s sonatas from

figure 2.5: a) K.281 and b) K. 282.

|
[

/__\
e

= s # ¥ i’. L
——— —
—)
b. Adagio
H 1 » o~ o N P P bl' N
S = = SRR =S =
. . J— | éhé Lé 4— !’é i
g s T —
-r 7 ' =

of dissimilar density. However, the practice of adding too many notes
is discouraged in that the potential problems (notably that texture
manipulation can obscure style) far outweigh the advantages.

Figures 2.6a and 2.6b show the two Mozart phrases of figures 2.5a
and 2.5b after clarification. Note that the keys have been transposed
to C major (the modes were already the same). The ties between
duple beats have been changed to repeated notes, which is typically
necessary only between metric divisions (see figure 2.5b, measure 1,
beats 2 to 3 right hand). The textures have been clarified by remov-
ing the doubling (compare figure 2.5a, measures 3 and 4 left hand,
and figure 2.6a, measure 2). Texture need not be altered if the music
is generally of the same texture and/or if loading time and memory
are not factors (thick textures represent more notes and require
longer load times and more random access memory). A few of the
embellishments have been removed for the previously discussed
reasons (see figure 2.5a, measure 4 right hand, and figure 2.5b, mea-
sure 3 right-hand trill), and the grace note of measure 2 of figure
2.5b has been factored into the rhythm of the beat. The results
demonstrate the effectiveness of the process: you can easily see
that the potential for logical recombination has increased signifi-

a.
8) °
e— et e
3 3 3 3

O 1 t oSl e et rE——

{']: H 3 4 /"F & ri‘i

3 5 e — =
b.
2%%“53%&&% E==—c=o—— e c——x
e o —

5 = = —o—
o\ , £ » -
e ettt 2
i 3 2 Pt

cantly. Although this process might be seen as unscholarly by some,
it is necessary for even the most simple pattern-matching and ATN
processes.

Two other areas of data clarification need to be mentioned here.
First, all database files in SARA require that input phrases have
cadences. The program relies on user-defined phrase endings
rather than on finding and defining cadences on its own. The
program does analyze cadences for their basic structures and
types (particularly half and full cadences) and stores them accord-
ingly in cadence lexicons. However, SARA expects these cadences
to be at the end of stored database phrases. The reasons for this
user dependency should be clear to anyone attempting to locate
cadences in complicated music: the task is not just onerous, but in
some music it is often a matter of personal aesthetics rather than
quantifiable judgment.

Clarification also includes identifying incipient gestures. Incipi-
ent gestures are considered special cases in SARA and are placed
in lexicons designed for appropriate reuse (for definitions of lexi-
con objects, see chapter 4). Incipient gestures, usually a measure
in length but containing mostly silence, are endemic to certain
musical forms, optional in other forms, and a rarity in still others.

64

EXPERIMENTS IN MUSICAL INTELLIGENCE

Such initial figures, because they often constitute single notes and
chords, can disrupt normal recombinant composition by causing
sudden silences and texture drop-out. Databases constructed prior
to the current object system definitions avoided the inclusion of
incipient gestures for this very reason. Incipient gestures are often
difficult to define. Therefore, like cadences, SARA requires users to
determine whether first notes are special (i.e., an incipient ges-
ture) or ordinary (the first downbeat of music). The program is
then able to (1) use the gestures in every instance of output (when
the number of incipient gestures matches the number of phrases
in a database), (2) use such gestures randomly (when there is a
mismatch between the number of incipient gestures and number
of phrases in a database), or (3) never use incipient measures
(when the incipient lexicon is empty; for further definition, see
chapter 4).

Critics of EMI and SARA databases often confuse data accuracy
and data representation with the goal of output. The foremost
goal when coding programs and data should be the potential for
creating aesthetically pleasing and meaningful composition, not
the accurate rendering of composer intent in a specific work. One
should be concerned about musical style (and certainly a massag-
ing of data can obscure style when practiced in the extreme).
However, it is also important that the origins of the program’s
output not be detectable. When one can accurately perceive the
music of derivation, the output becomes a superficial pastiche.
Ultimately, those intent on absolute accuracy in translating data
from score to coded database can still create their own unclari-
fied databases.

m ANALYTICAL TECHNIQUES

In general, SARA’s analytical techniques fall into two distinct cate-
gories: pattern matching and SPEAC analysis. Pattern matching
attempts to discover groupings of notes and rhythms, called signa-
tures (discussed in chapter 3). SPEAC analysis attempts to deter-
mine the function or character of a bounded (in time, in simultane-
ity, or both) group of pitches. SPEAC analysis and pattern matching
in EMI require that information be available in two forms: pitch and
interval. Pitch information is important for recombination and
inheritance by newly composed works. Interval information is

Melodic Analysis

THE ANALYSIS COMPONENT 65

important for comparing melodies, moving in similar directions,
that occur in various transpositions and that, without interval com-
parisons, would not resemble one another. SPEAC analysis in SARA
uses only pitch information, whereas pattern matching uses only
interval information.

“Music is generally divided into harmony and melody, but we shall
show in the following that the latter is merely a part of the former
and that a knowledge of harmony is sufficient for a complete under-
standing of all the properties of music” (Rameau 1722, p. 3). I do not
agree with this assessment by one of history’s most renowned theo-
rists of tonal harmony. Although most contemporary theory texts
and courses at the university level seem to conveniently place
melody and harmony together, melody and harmony have always
seemed to be related but separate entities to me. I have therefore
coded programs in both EMI and SARA according to this premise.
Melodic analysis in SARA requires figuring the contiguous notes of
a melody across the seams of a proposed deconstruction. Thus,
melodic analysis is determined by terminal-point destinations. These
destinations are integral to the ATN portion of both the EMI and the
SARA programs and are discussed at length in chapters 4 and 5.
Melodic analysis in both EMI and SARA follows the deeper structure
of music described by Heinrich Schenker (1935). Figure 2.7a shows the
melody of the opening four phrases from Mozart’s Symphony no. 40.
Looking at the first two phrases from a structural perspective reveals
that repeated notes, upper neighbor notes, and scales all tend to
embellish the straightforward dominant-to-subdominant motion of
this music. This structure is shown in the first measure of figure 2.7b.
The harmonic motion of tonic to supertonic, a member of the sub-
dominant family, substantiates this simple motion. Performance by a
conductor versed in structural analysis would tend to establish
rather than contradict this middleground analysis, with dynamic
emphasis on the downbeats of measures 3 and 5 of figure 2.7a. Fur-
thermore, following Schenker’s belief that a fundamental line (Urlinie)
tends to move stepwise downward from significant scale degrees of
the tonic triad (tonic, mediant, and dominant notes), one can almost
predict that the next phrase(s) of this melody will emphasize the
mediant note of the key (Bb). Figure 2.7a proves this to be true (as is
often the case in tonal music). The third and fourth phrases of
Mozart’s symphony complement the first two phrases with a down-
ward movement of the fifth to the third scale degree, as shown in the

66

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.7 @) The melody of Mozart’'s Symphony no.

40 in G minor (K. 550). b) A reduction.

a.
— —~
0 —~ —~ £ * o y
::: {' 1 { T i 1
3 1 1 { 1 1 1 | - o ——— | S | — 1] 1
11 | m— | =— 11 1 1 eumutt N |
o I
i
0 - - - * ~ -
T L%WI[_?;:
1 T b4 - 1 1 | I S| T
j S | S A G A ; SR B | L1 11 1 ~
D) T T T — 1
\% i
b.
0 ~ ;
&y i -
| 1 1 I_1
D) i ' i
i \ i

middleground layer analysis in figure 2.7b. This kind of structural
analysis often reveals more about the tonal motion of a work than
does a strictly functional analysis. Also, such middleground analyses
complement functional analyses, providing indications of true struc-
tural motion (i.e., the real subdominant nature of the supertonic at the
end of the second phrase of figure 2.7a).

Structural analyses such as the one just outlined provide clues to
the underlying direction and form of tonal works. They provide per-
formance grids indicating important notes for dynamic emphasis
that otherwise might get lost amid foreground detail. These struc-
tural analyses also provide an understanding of how tonal com-
posers successfully complete sections and movements and fulfill
expectations on a large scale.

EMI analyzes databases for Urlinie notes and ensures that such
scale degrees survive the recombination process by providing large-
scale unity at a background level. Such analysis is based on a corre-
lation between logical melodic notes and corresponding harmonic
motions, just as in figure 2.7. This analysis depends, of course, on
the logical ordering of phrases in the database (i.e., a phrase-
numbering scheme that reflects that of the original work). Because
SARA (the program included on the CD-ROM with this book) is small
in comparison with EMI and composes with databases sufficient for
interesting new compositions but not for compositions in larger

Harmonic
Analysis

THE ANALYSIS COMPONENT 67

forms, it does not contain the code for such analysis. However, it
does contain structural projection code (see chapter 5, particularly
figures 5.22 and 5.23 and relevant discussions) capable of large-scale
structural control similar to that of EMI For further information on
how EMI analyzes databases for recreating structural middle-
grounds and backgrounds in new compositions, see Computers and
Musical Style (Cope 1991a, especially chapter 2).

Structural reductions, thought by many to be uniquely suited to
tonal music (possibly because Schenker himself worked exclusively
in that realm), have useful applications in nontonal music as well.
Allen Forte (1955), for example, has analyzed elements of fore-
ground, middleground, and background in Stravinsky’s Petrouchka
(1911), Arnold Schoenberg’s Phantasy for Violin with Piano Accom-
paniment, op. 47 (1951), and Béla Barték’s Fourth String Quartet
(1928), among others. My own work with the structural analysis of
Balinese gamelan gong kebyar has produced interesting results in
terms of analytical comparisons with both Western composition and
EMI composition (Cope 1991a). In all these instances, however, it is
the concept of layer reduction, not the rule, that has been applied.

Harmonic analysis in EMI and SARA is a composite of the current defi-
nitions of harmonic rhythm (or segmenting) and harmonic vocabulary.
These definitions are bound to special variables. The special form
defvar (for “define variable™) is the standard way of declaring global
variables in a LISP program. Defining variables in a program in this
way makes them available to all the functions in that program. Unlike
setq (for “set quote”; see Cope 1991a, chapter 3), defvar allows for
quoted documentation in its definition, making such variables easily
understood during programming without having to glean their defini-
tion from their names or possibly opaque lists of data. Most variables
of the special type defvar are stored in a special file in SARA (see the
file sara-defvar on the accompanying CD-ROM). It should be noted,
however, that to alter a variable originally set with the special form
defvar requires the use of setq (which does not alter the documen-
tation originally incorporated with the defvar). Successive calls to
defvar using the same variable name will cause no alteration of the
original definition. Also, variables defined by the special type defvar
are often surrounded by two asterisks to denote their global status.
This distinguishes these variables from temporary or local types, such
as those defined by setq and the various forms of the macro let
occuring in the body of function definitions.

68

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.8 The default sSPEAC settings for SARA.

(defvar
(((24
43
((29
48
((31
50
((35
53
((28
59
((26
81
((33
40
((26
57
((28
47
((33
52
((35
54
((24

analysis-lexicon '

36
55
41
60
43
62
47
65
40
71
38
69
45
52
38
69
40
59
45
64
47
66
36

48
67
53
72
55
74
59
77
52
83
50
33
57
64
50
81
52
71
57
76
59
78
48

60
79
65
84
67
86
71
89
64
95
62
45
69
76
62
93
64
83
69
88
71
90
60

72 84 96 108 28 40 52 64 76 88 100 31
91 103) cl)

77 89 101 33 93 105 81 45 57 69 24 36
96 108) pl)

79 91 103 35 47 59 71 83 95 107 26 38
98 29 41 53 65 77 89 101) al)

83 95 107 26 38 50 62 74 86 98 29 41

101) a2)

76 88 100 31 43 55 67 79 91 103 35 47
107) c4)

74 86 98 89 101 77 65 29 41 53 93 105
57) p2)

81 93 105 24 36 48 60 72 84 96 108 28
88 100) c2)

74 86 98 30 33 42 54 66 78 90 102 45

105) s1)

76 88 100 32 35 44 56 68 80 92 104

95 107) s3)

81 93 105 25 37 49 61 73 85 97 28 40

100) el)

83 95 107 27 39 51 63 75 87 99 30 42

102) e3)

72 84 96 108 28 31 34 40 52 64 76 88

100 43 55 67 79 91 103 46 58 70 82 94 106) c3)
((25 37 49 61 73 85 97 28 31 34 40 52 64 76 88 100
43 55 67 79 91 103 46 58 70 82 94 106) e2)
((27 39 51 63 75 87 99 24 30 33 36 48 60 72 84 96
108 42 54 66 78 90 102 45 57 69 81 93 105) ed)

((32
41
((32
42
((25
56
((30
58
((27
58
((34
53

44
53
44
54
37
68
42
70
39
70
46
65

56
65
56
66
49
80
54
82
51
82
58
77

68
77
68
78
61
92
66
94
63
94
70
89

80 92 104 26 29 35 38 50 62 74 86 98
89 101 47 59 71 83 95 107) a3)

80 92 104 24 30 36 48 60 72 84 96 108
90 102) p3)

73 85 97 29 32 41 53 65 77 89 101 44
104) p4)

78 90 102 25 37 49 61 73 85 97 34 46
106) s4)

75 87 99 31 43 55 67 79 91 103 34 46
106) a4)

82 94 106 26 38 50 62 74 86 98 29 41
101) s2)))

THE ANALYSIS COMPONENT 69

The analysis of harmonic function in SARA is relegated to SPEAC
representations via reference to the defvar’ed definitions in figure
2.8 (see also Cope 1991a, chapter 3). Here, pitches, projected through
various octaves, are catalogued according to function. The program
then consults these definitions with groups of pitches in a given beat.
The consultation that reveals the most corresponding matched
pitches succeeds as a definition. Although simple, this process works
and, given that any definitions may be substituted for those currently
in the program, can provide analytical models for any music whose
fundamental style attributes reside in the domain of pitch.

It should be noted that each SPEAC symbol belongs to a family
of similarly named symbols (S1, S2, etc.). To some extent, the
numbers represent Shenkerian “grounds,” with lower numbers
indicating deeper structural levels. Therefore, S1 represents a
statement at a background level, whereas S3 represents a statement
at the foreground level. In SARA these harmonic levels are then com-
puted in counterpoint to the Urlinie to achieve an Ursatz (or funda-
mental statement; see Schenker 1935) of the music being analyzed.

Figures 2.9a—c shows how the SARA analytical process operates.
In figure 2.9a, the program captures a beat of pitches. In figure 2.9b,
these pitches are referenced to the SPEAC definitions. In figure 2.9c,
C1 is returned as the symbol representing the definition because its
comparison to the various definition lists produces the highest num-
ber of common elements. It should be noted again that this analysis
is part of the database program and not part of the composition pro-
gram. This saves repeating the process for each composition run. It
should also be noted that in EMI (not SARA) the SPEAC lookup
process is dynamic; that is, the definitions for SPEAC symbols
change as context changes. Thus, a C1 (as in figure 2.9¢) may result
from one context (here C-E-G in a cadence), an S1 may result from
another context (e.g., an initial chord in a phrase), and so on.

Figure 2.10 shows two analysis functions, the first of many func-
tions presented in this text. These functions are written in the com-
puter language LISP, which requires a brief introduction at this
point. LISP (short for “list processing”) requires that function names
occur first and follow left parentheses and that arguments (data) be
followed by right parentheses (for more information on LISP and
descriptions of some basic LISP primitives, see Cope 1991a, chapter
3). Therefore, the addition represented by “2 + 2” in standard nota-
tion would be represented by “(+ 2 2)” in LISP, with “+” being the
function and both “2”s being data. Function definitions in LISP
include the function defun (for “define function™), followed by a list

70 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.9 The analytical lookup process.

Beat:

(36 84 96 40 43 55 91)

Beat:

(36 84 96 40 43 55 91)

(((24 36 48 60 72 84 96 108
28 40 52 64 76 88 100 31 43
55 67 79 91 103) C1)

((29 41 53 65 77 89 101 33

93 105 81 45 57 69 24 36 48
60 72 84 96 108) P1)

({(24 36 48 60 72 84 96 108
28 40 52 64 76 88 100 31 43
cl ¢— 55 67 79 91 103) Cl)
({29 41 53 65 77 89 101 33
93 105 8L 45 57 69 24 36 48
60 72 84 96 108) P1)

of arguments, followed in turn by the body of the function itself. It
should be noted that the word function here does not mean the
same thing as function in music. In computer languages, a function
is an operator that alters data in ways described by the function’s
definition. In music, function is a manifestation of hierarchy. So that
the two meanings can be distinguished here, reference words
regarding musical and programming code will accompany the initial
appearance of the particular use of the word function with the
understanding that these meanings do not change until another ref-
erence is established.

Wherever possible in this book, I have used LISP functions whose
name describes their action. Thus, the function first returns the first
element of its argument. | have also attempted to create new function
names with similar goals. The same is true with variable names for
arguments and declared variables that represent data defined by using
defvar or setq. Thus, the intent of the following code should be

qa.

N

I—‘I'—-‘\OCO\IO‘\U‘I»hwl\)I—‘.U'
I

- o .

THE ANALYSIS COMPONENT 71

Figure 2.10 The functions get-function and

compare.

. (defun get-function (chord-notes)
(second (compare chord-notes *analysis-lexicon*)))

. (defun compare (harmonic-notes harmonic-functions)
(let* ((counts (count-harmonic-notes harmonic-notes

harmonic-functions))
(highest (first (my-sort '> counts))))

(if (count highest counts)

(find-nearest-the-front
(first (my-sort '< harmonic-notes))
(get-relevant-analyses counts
highest
analysis-lexicon))
(nth highest harmonic-functions))))

clear: “(play (+ first-note 12),” to play the variable “first-note”
in octave transposition, or “(get-smallest '(17 12 3 39)),”
which returns “3.”

Figures 2.10a and 2.10b show the functions get-function and
compare. These intermediate-level functions are responsible for
making the comparisons between gathered notes and harmonic
functions. The function compare uses count-harmonic-notes
(line 2 of figure 2.10b) to add up the number of matched notes
between the chord notes and the notes in the various regions of the
analysis-lexicon (shown in Figure 2.8). The LISP function
second (line 2 of figure 2.10a) then retrieves the SPEAC symbol
from the resulits of compare.

The function weight-notes in analyze (in line 3 of figure 2.11)
weights its argument members by duration and dynamic. Notes with
longer durations and louder dynamics are multiplied in strength by
factors determined by a sliding scale. For example, notes that ex-
ceed 500 ticks in duration (eighth note) and 100 steps in dynamic
(forte) are weighted five times stronger than those less than 250
ticks in duration (sixteenth note) and less than 75 steps in dynamic
(mezzoforte). Also, notes that occur on the beat are given more
strength. Such weightings are achieved by repeating stronger notes

72

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.11

The function analyze.

1. (defun analyze (chords)

2
3.
4

(if (null chords) nil
(cons (get-function (weight-notes (first chords)))
(analyze (rest chords)))))

Jans
S

CD-ROM

The function analyze (shown in figure 2.11) can be found
in the file named sara-database in the sara source folder.
This function takes a list of event-lists as in ' (((0 79 250
1 100) (0 64 250 2 100) {0 48 500 3 100) (500
65 500 2 100) (500 50 500 3 100)))) and returns a
list of SPEAC function names such as (al). Running ana-
lyze with different lists of events can be a useful introduc-
tion to the analysis program. Tracing analyze and its vari-
ous subfunctions, such as get-function and compare
(see figure 2.10), can also be illuminating. Observing the
functions weight-notes, weight-note, and on-the-
beat? (all in the file sara-database) provides information on
how SARA factors rhythm into the analysis process. 4

so that they have more influence in determining function during
harmonic analysis. A good example of this appears in the following
sample runs of weight-notes:

(weight-note '(0 67 500 1 127))
(67 67)

(weight-note ' (500 67 249 1 74))
(67)

(weight-note '(0 67 1000 1 127))
(67 67 67 67 67)

These repeated notes are then appended to the original collection
of notes, which are then compared (by compare in get-function;
see figure 2.10a) to the various chord definitions located in
the *analysis-lexicon*. In this manner, analyze can interpret

THE ANALYSIS COMPONENT 73

subtle gradations and nuances of harmonic function that otherwise
could produce misleading results.

Chapter 6 of Computers and Musical Style (Cope 1991a) discusses
the potentials of “varying the interpreter protocols.” In both EMI and
SARA, such variations are accomplished by revising the definitions in
the *analysis-lexicon* (see figure 2.8). Thus, SPEAC functions
can be attached to any assemblage of notes that the user wishes. This
is particularly useful when analyzing certain twentieth-century music
or pre—common-practice works. Thus, the notes C-E-F (36, 40, and 41
and projections) could be analyzed as C1 (tonic with C as root in C
major in traditional terms), as an A1 (subdominant with F as root,
according to Hindemith [1939] acoustic root strengths), or in any
other way desired. Such revisions can be particularly useful when
using programs like SARA for analysis only. When using the program
for composition, such analysis becomes critical for proper ATN: if
analysis is not accurate, then disparately functioned measures can be
joined, causing disruption of both output quality and style adherence.

B ANALYSIS PROGRAM

The top-level function for analyzing music in SARA is analyze (see
figure 2.11). It returns a list of SPEAC names that are the result of
applying get-function (in line 3) to its argument, which has been
appropriately weighted by use of the function weight-notes. As
described in the text accompanying figure 2.7, EMI and SARA rely on
Schenker-inspired layer analysis for composing music with tonal
backgrounds. In SARA this structure is formed by preexisting code
and not by analysis (see the relevant description of the functions
schenker-plot, translate-urlinie, and translate-ur in fig-
ures 5.22 and 5.23). In EMI, however, such structure is based on the
analysis of music in the loaded databases. Such analysis follows two
separate processes. First, ordered phrases in a database are treated
as contiguous members of a section of a work. Thus, although music
is stored by phrase in EMI, the analysis program can analyze struc-
ture. Second, structural analysis is an integral, active part of the
composition process. Phrases completed as parts of balanced pairs
are analyzed for their SPEAC components, and second phrases are
composed using the projected logic of this analysis.

Structural analysis of both of these types follows the same princi-
ples as those described in conjunction with figure 2.7, the difference

74

EXPERIMENTS IN- MUSICAL INTELLIGENCE

being that this compositional SPEAC analysis is accomplished “on
the fly” rather than being stored in databases. Because both the
derivation of work structure and the just-composed phrase struc-
tures must occur at the time of composition, these types of analyses
significantly prolong compositional run times. This is the principal
reason for omitting them in SARA. On the other hand, the impor-
tance of these types of dynamic analyses in the creation of larger
forms is one of the most elegant sophistications found in many EMI
compositions.

For example, figure 2.12 shows an EMl<composed composition in
the style of Robert Schumann called Childhood Scene. This work is
based on Schumann’s Kinderszenen (“Scenes of Childhood™), op. 15
(1838) and other of Schumann’s piano works. It is a good example of
forward layer processes moving 5-4-3-2-1 over the course of the
work, with measures 1 to 16 a prolongation of the dominant D in G
major. The cadence of the first section in measure 16 ends with the
dominant in the melody, whereas the repetition of the same section
(beginning in measure 17) ends with the tonic G in the melody in the
final measure of the work. The 4, 3, and 2 scale degrees (or the notes
C, B, and A) of the Urlinie occur in measures 23, 24, and 26, respec-
tively, and are given extra weight in the repeated section by the final
cadence. This Urlinie was composed by the program rather than
derived from Schumann’s music, though clearly this piece is based
primarily on the brief work called Von fremden Léndern und Menschen
(“From Foreign Lands and People™), part of which is shown in figure
2.13. Interestingly, Schumann’s short piece uncharacteristically shows
no appreciable melodic difference between repeated sections, though
it does have agogically altered cadential notes in the accompaniment
in its final measures.

The progressions of the EMI and Schumann works are different but
related (i.e., the Schumann work was not a network for the EMI-
Schumann). Each work’s opening eight measures provide most of the
functions used in the measures that follow. The Schumann work
explores the tonic, subdominant, dominant, and secondary dominant
of the dominant regions (C1, P1, Al, and S1), whereas the EMI-
Schumann uses the tonic, subdominant, dominant, supertonic, and sec-
ondary dominant (leading tone) of the dominant areas (C1, P1, A1, P2,
and S1; only one function difference). The second section of the Schu-
mann uses the supertonic (present in the first measures of the EMI-
Schumann) and the dominant of the submediant along with the chords
of its first eight measures, whereas the EMI-Schumann uses the subme-
diant as well as the other chords of its opening section.

THE ANALYSIS COMPONENT 75

Figure 2.12 The EMI-Schumann Childhood Scene.

4 5
2 — T —— > L > —
&% : == —r——r—r ; :
. = e 3 . = . . o 2
: el T abe T e EE=E = S St me
3 3
10 |
e === ==
' | ' ——— 1 ' i
= o . = . o e 2 o r 3 g
: e e e e e =
1 1 1 1 | - 1 :
Q 2 | 15 ~
b e == =+ HF P ——
: i ~ 1 i ’ : '
I
) he 2 -) . 2 . _he Y3 1
e oo o e == ==
= ' I ‘ — e T e
A 4 20
iy T—f———-h-].. S . m— T T3 o ——]
&= — =aass.—1=
= " 3 3 = . r3 o = = ¥y 3 =
S == e e e o e o e e
T T i T T : I —]
25
H—4 .L i] —
:@—F-—F—P——'# 4 o > —
T —=1 i i - *
e o ~ 2 _ 3 he
% _F_IP — — = P 1 T = F
' ' S==S=sma = !

76

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 2.13 Schumann’s Von fremden Ldndern und

Menschen (“From Foreign Lands and
People”), from Kinderszenen, op. 15,no. 1.

THE ANALYSIS COMPONENT 77

Figure 2.14 Schumann’s Der Dichter spricht ("The
Poet Speaks”), from Kinderszenen, op. 15,

L
| 10
-
'

L]
Al

e
el
gt |
e
NN
T%
a i

~

| VI

L]

L]
y
L]

1/

e
y
ol

BN

~

Of interest here is the secondary diminished-seventh chord of the
dominant (C§-E-G-Bb) at the beginning of measure 2 in the EMI-
Schumann. It resolves to the tonic in root position rather than to its
normal dominant function, the expected chord from standard tonal
functional protocol (or s1 to C1 in SPEAC). This variation probably
is less the result of apparent creativity on the part of the program
than it is of finding a variation of it in another work in the database:
Der Dichter spricht (“The Poet Speaks”™), no. 11 of Kinderszenen
shown in figure 2.14. In measures 3 and 4 of this piece, the sec-
ondary harmony of the dominant moves to the tonic six-four (a
dominant-type function), paving the way for the analytic code to
produce a similar variation in the EMI-Schumann.

Although the Schumann Von fremden Léindern und Menschen was
not used as a transition network for the EMI imitation, the analysis
of the form, harmonies, and progressions of harmonies of figure 2.13
obviously served the program as a model. Even the fermata in mea-
sure 14 of the Schumann was encapsulated by the program (seen
in measure 16 of the EMI-Schumann and symbolically rather than
temporally represented in the data). Also, the triplet rhythm of the
accompaniment, the stepwise voice leading, and the basic shape of

no. 13.
04 : e e e E P
M T P N .) 1Y = 1 &
e e e e e =, ===
v
w e L
V4
} |.) 7] 7 al ’!l J ‘;] %nl [v S
e e = & e e e i —
- p— < b al. hi] 1 ha il | =4 1
SR B e S S
N
f) P) ') } } I
1 :] 1 (8) T T i 1 # C:
T - nl ¢ t 2] - T 1 T cP }
F-J 2= | -
.Jv W H | [E m :
\—/
— r rit == | it ™
o —— ' .. =] =
O J] N) -~
3 i ! - £ o [8) T T d
! .

the various lines all serve both works well. Analysis of the ori-
ginal Schumann works, particularly regarding the ways in which
these various elements interlock and imitate, helps to fuse the EMI-
Schumann into a work that is separate from but related to the
originals.

THREE

The Pattern-Matching
Component

Whereas the analysis components of EMI and SARA focus on analyzing
musical data for storage in databases for recomposition, the pattern-
matching (recognition) component ensures that perceived signatures
will remain intact in the output. Pattern matching assumes that recom-
binant music, no matter how intelligently its parts are analyzed and
refitted together, will lose an integral part of its style without ensuring
that some patterns, larger than a part size, will survive the process.
Patterns take many forms. However, to be detected by a pattern
matcher these patterns must have some shared reference. Leonard
Meyer has attempted to encapsulate just such a commonality:

The apprehension of a series of physically discrete stimuli as constitut-
ing a pattern or shape results from the ability of the human mind to
relate the constituent parts of the stimulus or stimulus series to one
another in an intelligible and meaningful way. For an impression of shape
to arise an order must be perceived in which the individual stimuli
become parts of a larger structure and perform distinguishable functions
within that structure. A shape or pattern then . . . is meaningful and sig-
nificant because its consequence can be envisaged with some degree of
probability. (Meyer 1956, p. 157)

Pattern matching can help create compositions more true-to a
given style (Cope 1990), with musical style defined as “the identifi-
able characteristics of a composer’s music which are recognizably
similar from one work to another” (Cope 1991a, p. 30). The recogni-
tion of these signatures can aid in the perception of that composer’s
musical style. These signatures may be varied to some degree at
each appearance but nonetheless remain perceptible as variations
of the same musical idea.

79

80 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.1

My research has shown that signatures are typically two or more
beats in length (see also Cope 1991a). They are generally location-
ally dependent and size specific. Figure 3.1 shows two versions of a
classical cadential signature from Mozart, with choice of key, num-
ber of notes, and type of accompaniment being variations. The inter-
vals of both melodies are exactly the same, with variations occur-
ring in rhythm. The harmony is virtually the same for both examples
functionally, although there are discrepancies in the voicing and
doubling.

Once the EMI and SARA pattern matchers discover signatures,
they protect them from recomposition. Without this protection, sig-
natures would get lost in a Pandora’s box of confused musical ideas.
Once signatures are protected, the remainder of the music can be
reconstructed according to the appropriate metric subdivision.

Two versions of a signature of Mozart:

Q) Piano sonata, K. 330, third movement,
m. 110. b) Piano sonata, K. 547a, first
movement, mm. 181-82.

a.
e o o
t 1 ?} F — R
v N Y)
N
d LD
= —— ’
b.
1T T b'
e~ ! }
v@ -

[
:

BT
N

THE PATTERN-MATCHING COMPONENT 81

m TESTING THE SIGNATURE THEORY

I have attempted, on numerous occasions, to evaluate the effective-
ness of signatures in communicating musical styles to listeners.
Although in each case I have tried to verify at least some of the qual-
ifications of the subjects used for these evaluations, I have not been
able to specifically define either the test or the control groups in any
scientific manner. However, the findings here are more than anecdo-
tal and, barring a more formal set of tests, seem useful at least in
providing testimony for enhanced style recognition when signatures
are present. In 1991, [asked eighteen students midway through their
second year of music theory to evaluate twenty-five examples of
Mozart and machine-composed Mozart. These students averaged
10.4 years of study on a musical instrument at the time of this exper-
iment. Six of the students were pianists and the others primarily gui-
tarists and vocalists. There was one violinist and one clarinetist in
the group. The students professed to have studied (on average) 9.5
works by Mozart on their instruments and to have heard (on aver-
age) 28 works by Mozart. In addition, their theory teacher had
assigned the following analyses of Mozart during the first half of the
year: the development sections of the first movements of K. 570 and
K. 576, the first movement of K. 331 (all piano sonatas), and the so-
called Dissonance string quartet, K. 465.

The test consisted of a questionnaire regarding the above-named
qualifications followed by twenty-five multiple-choice questions.
The students were instructed to respond whether the played exam-
ple (on tape) was Mozart. The examples consisted of (1) phrases of
Mozart chosen from the lesser-known sonatas to avoid easy recogni-
tion, (2) phrases of machine-composed music without signatures,
and (3) phrases of machine-composed music with signatures. In all
cases, the machine-composed examples that were perceived to be
the best examples of stylistic replication were used. All phrases
were then randomly mixed so that signature and nonsignature
examples were not differentiated in any way. The test examples
were played twice, with a ten-second delay between each playing.
The students were not told the number of actual Mozart examples
present.

Sixty-seven percent of the students recognized the Mozart phrases
as Mozart. Sixty percent of the students identified the machine-
composed examples with signatures as Mozart. Thirty-eight percent
of the students identified the machine-composed examples without
signatures as Mozart. Breaking the scores down by instrument

EXPERIMENTS iN MUSICAL INTELLIGENCE

yields interesting results as well. By far, the single most successful
results came from the lone violinist in the group. This individual
recognized eighty percent of the real Mozart and thought that sixty
percent of the machine-composed music with signatures and
twenty percent of the machine-composed music without signatures
were Mozart. Aside from the violinist’s scores, the pianists scored
the highest: seventy-two percent for real Mozart, sixty-four per-
cent for machine-composed music with signatures, and thirty-six
percent for machine-composed music without signatures. The lone
clarinetist scored twenty percent for real Mozart, forty percent for
machine-composed music with signatures, and eighty percent
for machine-composed music without signatures. The six guitarists
scored seventy percent for real Mozart, fifty-seven percent for
machine-composed music with signatures, and thirty-five percent
for machinecomposed music without signatures. These latter
scores suggest some correlation between Mozart’s available reper-
toire for the respective instruments represented in the class and
style recognition. However, the information from the scores regard-
ing the number of years studied and works known was unrevealing.
Scores were uneven, and they generally increased and decreased in
parallel (i.e., as Mozart recognition increased, so did the recognition
of style in machine-composed signature and nonsignature works).

This study, of course, falls outside the framework of scientifi-
cally valid research. It does, however, indicate that signatures can
contribute to style recognition on the part of some listeners.
Although it may take years to establish absolute proof of this as-
sertion, it would seem that perceived style may survive recombi-
nant processes if certain elements such as signatures are retained
by that process.

A test similar to the one just described was presented at a special
three-day demonstration during the 1992 conference of the Ameri-
can Association for Artificial Intelligence (AAAI) in San Jose, Califor-
nia. Called “Artificial Intelligence and the Arts,” this test pitted
machine-composed examples with signatures in the style of Mozart
against actual Mozart. Almost two thousand individuals tested their
ability to recognize Mozart. Results usually hovered near the fifty
percent mark, suggesting that the audience was unable to distin-
guish between machine-composed Mozart and the real thing.
Although the participants could not be prejudged for competence
(and thus the test has absolutely no scientific value), the results do
indicate that the machine-composed music has some stylistic valid-
ity and that, for the layperson at least, real Mozart is hard to distin-
guish from artificial Mozart containing Mozart signatures.

THE PATTERN-MATCHING COMPONENT 83

m PATTERN-MATCHING TECHNIQUES

Although it may seem obvious, it must be noted that music entered
into a pattern matcher must itself have style if matching is to produce
useful signatures. Pattern matchers can detect style only to the extent
that it is present in the source material. However, pattern matching
music for signatures can be one way of determining whether certain
music has a definable style recognizable by signatures.

The pattern matchers for EMI and SARA operate on two funda-
mental components: pitch and duration. The style of the music
under analysis must reside in one or both of these variables. Musical
styles that are distinguished principally by their timbral, dynamic, or
other qualities are not capable of being analyzed by these programs
(more recent implementations of EMI include timbre and dynamics;
see chapter 7). A minimum of two works, or coherent parts of works,
need to be entered into a database for the pattern matcher de-
scribed here to operate. These should be coded (and clarified) in
certain ways so that the pattern matcher can do its job efficiently
(as described in chapter 2). Obviously, using just pitch and duration
in the process has significant limitations. Missing are all the inflec-
tions of timbre, articulation, place within the bar, relation to beat,
and so on. However, these elements can be factored into the pattern-
matching process by additional code in strategic locations.

As discussed in chapter 2, one should eliminate pitches shorter
than a certain duration when preparing databases. Typically, notes
of 100 or less in duration (less than a thirty-second note) should be
discarded to make pattern matching easier. On a more complex level,
key and mode should be homogenized to C major. Removing modula-
tions is also extremely important for melodic pitch pattern matching.
Data should be in one key from beginning to end to ensure the legiti-
mate matching of chromaticism. Removing modulations involves
transposing the part of a phrase in a new key to the original key
before ultimately transposing the entire phrase to C major.

Pattern matching can be aligned in a variety of ways with quite dif-
ferent results. For example, a serial alignment can eliminate patterns
at the point where they fail a given test, thus avoiding further non-
illuminating tests. Parallel alignment can, however, allow patterns
that pass a certain number of tests to succeed. Figures 3.2a and 3.2b
show how serial and parallel alignments of tests work with two
simple input patterns using two tests: correct interval and direction
matching. In the serial pattern match of figure 3.2a, although the pat-
terns pass the interval test, they fail the direction test and thus do

84 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.2 Serial and parallel matching examples

with summational and differential

refinements.

/)

—r———~—T—
) o v * g v —

ol

a. Serial

'

2

¢. Summational

B

d. Differential

F
F
F

e ==Sre=

Interval F—— Direction —— nil
Interval
f)
N
» o o v ° - v
Direction
100% 50% at 20% threshold
Interval — Direction [30%
o e v g
60% benchmark
100% 50% at 5% threshold
Interval Direction — 10% nil
60% benchmark

THE PATTERN-MATCHING COMPONENT 85

not match. However, in the parallel pattern match of figure 3.2b, the
patterns pass the interval test and therefore succeed.

Tests can also act cooperatively rather than pass/fail so that pat-
terns gain weight with each successful trial. Thus, patterns can fail
certain tests and still succeed if their resultant weights surpass a cer-
tain threshold. The summational form of pattern matching adds the
various pattern-matching test results in relation to a provided bench-
mark. In figure 3.2c, the output must surpass the threshold for the
match to succeed. Thus, in figure 3.2¢, comparing interval and direc-
tion tests at 100 and 50 percent correct, respectively, with a bench-
mark of 60 percent, produces a summational result of 30 ([100 - 60]
+[50 — 607]). In figure 3.2d, because the results represent a deviation,
the output must fall below the threshold for the match to succeed.
Thus, the differential form of pattern matching returns the absolute
value of those test results below a provided benchmark. Therefore,
in figure 3.2d, the comparison of interval and direction tests at 100
and 50 percent correct, respectively, with a benchmark of 60 percent
produces a result of 10 (0 + [50 — 60]). Refinements and combina-
tions of pattern-matching strategies can produce useful results.

EMI uses both serial and parallel forms of pattern matching with
both summational and differential weightings. Such test strategies
have the advantage of being able to detect very subtle pattern varia-
tions. These strategies also have the disadvantage of having to set
literally hundreds of controllers, each setting of which having the
sensitivity to pass or fail widely different sets of patterns. To save
users the onerous task of setting and resetting such a large number
of controllers, SARA uses a simple serial type of pattern matcher
with pass/fail nodes. As will be seen later in this chapter, the
matcher is still quite capable of detecting signatures, though sensi-
tivity is exchanged for simplicity and ease of use.

There are also many ways to gauge accuracy in pattern matching.
For example, fonal and real approaches to variation in the melodic
portion of the pattern matcher’s operation can produce quite differ-
ent results. The term tonal simply means that the variant conforms
to the half-step, whole-step patterns of major and minor keys,
whereas the term real reflects an exact intervallic match. Pattern
matchers set to real forms of comparison may miss patterns that
conform to fonal variances unless controllers are set so wide as to
allow many nonsignatures to pass as well. Pattern matchers set to
tonal forms of comparison may not be able to distinguish between
variations of chromatic and/or nontonal patterns.

Figure 3.3 shows a very simple musical line with three variants of
the same four-note motive. The pattern is unmistakable to the ear—

86

EXPERIMENTS IN MUSICAL INTELLIGENCE

it is a simple tonal pattern, sequencing stepwise down the C major
scale. | emphasize the word simple because to the ear it is exactly
that. For a computer program, however, these motives do not
appear to be repeating patterns at all except in direction. If we chop
the music into three motives, it looks like figure 3.4a in numeric
notation. Transposing the second and third examples of figure 3.4a
to the starting note of the first example of figure 3.4a gives figure
3.4b, and the problem is clear. The second and third notes of the
second example of figure 3.4b do not match the second and third
notes of the first example of figure 3.4b, nor does the third note of
the third example of figure 3.4b match the third note of the first
example of figure 3.4b.

By referencing the process to a major scale, however, and sliding
the sequence around, the original four-note motive of figure 3.3
appears as three notes up a scale and includes a leap back to the
original note as shown in figure 3.5. Moving the original pattern
around in this list shows that each example falls exactly into place.
We now have a kind of moving reference that follows the motive (e,
step up, step up, two steps down, without stating what kinds of
steps) and allows the patterns to match tonally. Thus, all the
matches are recognizable even though the numerical intervals differ.
Melodic matches in tonal music could be detected without this refer-
ence point but only with a level of fuzziness that would necessarily
allow all sorts of nonmatching motives to match. Real approaches
to pattern matching do not discriminate between patterns that con-
form to tonal scales and those that do not. However, as will be seen,
real approaches to pattern matching can be particularly effective in
detecting similar chromatic patterns.

We have seen a few of the ways that motives vary from one
another and yet the ear is able to identify them as a match. There
are virtually thousands of ways to vary motives. There are relatively
few methods, however, that are both used by composers and appar-
ent to the ear. For example, extended retrogrades (backward varia-
tions of motives) rarely occur and, when they do, are rarely recog-
nized. The EMI pattern matcher allows only those forms of variation
that can be easily heard to pass successfully. Almost all the more
recognizable variations can be found in Beethoven’s famous Fifth
Symphony, so I will use examples directly from that work.

The principal motive of the Symphony no. 5 is shown in figure
3.6a. Beethoven weaves an incredible panoply of variations from
this motive. These variation types must be recognizable by a pat-
tern matcher. Some of Beethoven’s variations are shown in figures
3.6b-j. Figure 3.6b is a simple tonal transposition of the motive. Note

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

THE PATTERN-MATCHING COMPONENT

A simple musical line with three variants of
the same motive.

0O

ST

Numeric equivalents for figure 3.3 in exact
numbers (a) and in transposition (b).

a (72 74 76 72) (71 72 74 T71) (69 71 72 69)

b. (72 74 76 T72) (72 73 75 72) (72 74 75 T2)

Using a major scale as reference for the
motives of figure 3.3.

1
1

. . . 67 69 71 72 74 76 77 79 81 83 . .

Motive variations of Beethoven's
Symphony no. 5, first movement: a) Mm.
1-2 (violin 1); b) Mm. 8-9 (violin 1); ¢) Mm.
16~17 (violin 1); d) Mm. 35-36 (violin 1);

e) Mm. 65-66 (cello and bass); H Mm.
94-85 (bass); g) Mm. 146-47 (violin);

h) Mm. 152-53 (viola and cello); i) Mm.
167-68 (flute); j) Mm. 188-89 (flute).

87

| 108
L 1
L 1k

I
["N

Ll

Evs

88

EXPERIMENTS IN MUSICAL INTELLIGENCE

how the interval now forms a minor rather than a major third. Figure
3.6c is a combination of a tonal sequence and the filling in of the minor
third with an intervening second. Figure 3.6d involves inversion-
extension, with a minor third projecting upward from an initial note
a major third above the original entrance. Figure 3.6e is an interval
augmentation-inversion, a tonally conceived variation extended to a
perfect fourth in the upward direction. Figure 3.6f is an interval
diminution, and figure 3.6g is an inversion of the variation given in
figure 3.6c. Figure 3.6h shows a transposition of figure 3.6¢c with
interval diminution (minor second instead of a major second last
interval). Figure 3.6i is a scalar interpolation of figure 3.6e trans-
posed two octaves. Figure 3.6j demonstrates interval diminution
and skeletonization. All these forms of variation, and several others,
are accommodated by both the EMI and the SARA pattern matchers.

As previously mentioned, the EMI and SARA pattern matchers rely
on controllers (and tonal matching in the case of EMI) to address the
issues of what constitutes a match if one motive does not exactly
match another version. This almost capacity of a matcher is ex-
tremely important to its usefulness. There are musical almosts that
are recognizable to the ear but virtually unrecognizable in data form.
Different composers have varying motivic development. Beethoven,
as we have seen, manipulates material within a given rhythmic
framework. A pattern-matching window for Beethoven’s music can
be very small and still be successful. As will be seen, Chopin, by con-
trast, varies by ornamenting lines with embellishments such that if
the window to include intervening notes is not extremely wide a vari-
ation of a pattern will be lost. Such extension, although it occurs in
Beethoven, is not his primary focus.

Figures 3.7a and 3.7b should be compared to the previously
described Beethoven variants. Note how Chopin’s theme in figure
3.7a is very much present in the second example and the ear hears
it without much difficulty. However, a pattern-matching program
will have problems recognizing the similarity unless it has the flexi-
bility to allow the interpolated notes to pass without effect. The cir-
cled notes in figure 3.7b indicate the position of the notes of figure
3.7a. Note how Chopin reinforces the ear’s interpretation of the first
part of figure 3.7b as a variation by using contiguous pitches of the
original pattern in measure 2. In measure 3 of both examples, the
comparisons seem problematic at best, although with a sensitive
performance the thematic elements clearly surface. Measures 4 and
5 again reassure the ear of the theme’s presence. Measures 6 and 8
of figure 3.7a and measures 6 and 7 of figure 3.7b also prove contrast-
ing in nature, though the ear still captures the inherent relations.

Figure 3.7

THE PATTERN-MATCHING COMPONENT 89

Chopin’s Mazurka, op. 17.no. 4: a) Mm.
5-11.b) Mm. 13-19.

B e
< o i T =
J L | 1 4L =‘ !' } { v ng | .
6 7 8 ~
0 is # |b; = T ——— }
7‘rl "'I" 3 | =0 ‘I_F > - } é‘l. "1
s— ia - i 11 . 1= > &
A3 — 1 1 1 1 i 1 :
o }

Controllers

Measure 7 of figure 3.7b condenses bars 7 to 8 of figure 3.7a to a sin-
gle measure with significantly altered note order and durations (e.g.,
the C of beat 1 in measure 8 of figure 3.7a is octave displaced as note
2 in measure 7 of figure 3.7b). As will be seen, such variations require
a combination of controller settings for detection. Chopin typically
varies his music in this way, as do certain other composers (e.g.,
Scriabin). Calibrating the size of certain controllers to allow such
variations to pass while not admitting various nonvariations requires
some combination of a good ear, knowledge about the composer, and
experimentation. Algorithms can also intelligently automate the
process of adjusting the controllers to some extent (see Cope 1992
and the discussion in chapter 7 of this book).

On one level, pattern matching can be a rather simple process. This
is particularly true when attempting to match patterns exactly. On
another level, however, pattern matching can be an approximating
process that requires programming nuance and insights where, with
certain groups of controllers set to appropriate levels, signatures

90 EXPERIMENTS IN MUSICAL INTELLIGENCE

M Controllers in EMI

appear easily and clearly. With other groups of controllers and less
appropriate settings, nothing that even remotely resembles stylistic
signatures appears. For EMI and SARA to achieve this approximating
process, they require certain variables, called controllers, to narrow
the field of found patterns to those legitimately reflective of a com-
poser’s musical style. Controllers help pattern matchers find signa-
tures when patterns are musically comparable yet not exactly the
same. Controllers also help pattern matchers avoid identifying too
many patterns as signatures, thus rendering databases immutable.
In essence, pattern matching can be compared to the action of a
sieve in which controllers define the width of the sieve’s mesh.

When EMI or SARA attempts to match two patterns and encoun-
ters a variance, they apply a series of tests to determine whether
(1) the variance adheres to one of the program’s allowed variation
techniques and (2) the amount of the variation falls within tolerable
limits. Each of these tests relies on a specific variable, or controller,
to determine the extent of allowable difference. These controllers
each have a user-assignable value. As a simple example, imagine a
pattern of two repeating notes matched against a pattern of two
notes a minor second apart. Imagine as well that the matcher
employs a comparison test with a controller called *difference*
gauged in integers signifying half steps. With this *differ-
ence* controller assigned a value of 1 or more, the two patterns
would succeed. With *difference* assigned a value of zero, they
would not match. EMI has many such controllers that act in concert
so that many different kinds of tests are performed. Thus, it is
important to provide access to the pattern matcher through these
controllers, as composers’ styles, and thus signatures, differ as they
appear in variation.

The pattern-matching controllers I will describe first are those
present in various incarnations of EMI. These descriptions will help
to clarify both the variety of possible controllers and the subtle
interplay between them. I will then describe the controllers avail-
able in SARA and, through a sample pattern-matching session,
demonstrate how these controllers can be set and reset to produce
effective results.

As mentioned previously, EMI takes two very different approaches
to melodic pattern matching. The first (or tonal) approach matches
pitches and compares patterns to a tonal scale as shown in figure
3.5. The second (or nontonal) approach matches the intervals
derived from pitch patterns. Some patterns, particularly diatonic

THE PATTERN-MATCHING COMPONENT 91

patterns, will resolve well using tonal controllers, whereas others
require nontonal controllers. To ensure that both approaches have
an opportunity to participate in the pattern-matching process, tonal
and nontonal controllers are applied in parallel (see figure 3.2); suc-
cess from either model is forwarded as successful. Controllers in
each separate process (i.e., tonal or nontonal) are arranged serially
(again see figure 3.2) using summational techniques so that patterns
that do not match any single test can still match by successfully
passing enough incremental portions of tests.

It should be noted that EMI does not employ combined pitch/
rhythm pattern matching or controllers. Instead, it employs (at user
discretion) a separate pattern matcher to discard patterns with
seriously different rhythmic proportions and temporal interrela-
tions before they enter the main interval/pitch pattern-matching
sequence. Thus, a pattern consisting of four eighth notes will match
any pattern consisting of equal or nearly equal durations. However, a
pattern consisting of significantly varying durations will be rejected
from this attempted match. EMI also employs a separate rhythm
matcher that allows patterns with similar rhythms to succeed (see
the *rhythm* controller description below). Melodic and harmonic
pattern matching also fall into different categories because they
require different controllers. However, melodic signatures are bound
to their harmonic counterparts (and vice versa) when signatures are
protected from recomposition by the program.

The principal controller in EM], *allowance*, defines how far a
melodic match can deviate in half steps. This controller affects the
behavior of many other melodic controllers (i.e., both tonal and non-
tonal controllers), as it provides the maximum variance each con-
troller may have from exactness in an attempted match. A high num-
ber (e.g., 10) in *allowance* can cause very different patterns to
match. A low number (e.g., 1) allows few and sometimes no matches.
An appropriate value (e.g., between 1 and 10, depending on com-
poser) allows patterns with slight variations to match. In general,
every effort should be made to keep the value of *allowance* low,
as it tends to allow noise to enter the pattern-matching process.

Figure 3.8a shows a Mozart signature and a series of tonal varia-
tions. This signature typically appears in slow movements of Mozart’s
piano sonatas in varying guises. For a pattern matcher to substantiate
this pattern as a signature, the variations must be allowed to match.
Concomitantly, the latitudes enabling the variations to match must
not be so extreme as to allow nonsignatures to succeed as well.

Figure 3.8b presents a variation of figure 3.8a. This variation is an
inversion of the original with diminuted intervals between notes

92

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.8 Tonal variations of a Mozart signature:
a) Motive: K. 330, second movement, mm.
19-20; b) Inversion: K. 333, third movement,
mm. 154-5; ¢) Augmentation: K. 279,
second movement, mm. 56-57:
d) Diminution: K. 309, second movement,
mm. 4-5; e) Interpolation: K. 333, first
movement, mm. 133-134;
f) Fragmentation: K. 281, second
movement, mm. 25-26; g) Order: K. 545,
second movement, mm. 7-8.

d.
Y - N J{ ﬁkﬁ
__/
e.
—4
) : =
f.
T e
- f |]
I
g.
A 4 |

THE PATTERN-MATCHING COMPONENT 93

4-5 and 5-6. These two patterns would not succeed in a nontonal
pattern match, as the interval amounts for the first four notes, for
example, do not match (2 2 1 as opposed to —1 —2 —2). For a non-
tonal match to occur, the *allowance* controller would have to be
increased. This would in turn allow a large number of nonsignatures
to also succeed. A tonal match on the other hand, occurs naturally
as both the original and the inversion fall naturally in their respec-
tive keys (or as transposed to C major). The *p-inversion* (p for
pitch) controller checks for inversions such as this during pattern
comparisons and would need to be set to 7 (because 7 notes have
created inverted intervals) to catch this variation.

Figure 3.8c shows a more severe variant of the original pattern.
Here the fourth note moves a sixth, rather than a second, requiring
the use of the *p-augmentation* controller (set to 1 to succeed in
this instance). The first three notes are also a minor second apart, a
nontonal relationship that, as is the case with figure 3.8d, requires
the *p-diminution* controller. Both figures 3.8¢ and 3.8d also
have durational variations in their second halves. However, the pro-
portions remain roughly the same, and thus the rhythm matcher uti-
lized at the onset of the process will pass these variations success-
fully. Figure 3.8c has an inverted second half that requires a
combination of the *p-diminution* and *p-inversion* con-
trollers for a successful match.

Figure 3.8e includes a single interpolated note (D, note 5) that
requires a *p-interpolation* controller setting of 1. Figure 3.8f
appears in retrograde form (*p-inversion* controller) without
the ending sixteenth or thirty-second note turn and requires a set-
ting of 1 in the *p-fragmentation* controller for a successful
match. Figure 3.8g is an order variation of the signature and requires
the use of the *p-order* controller. As in many of these cases, the
patterns must also be transposed for the pitch match to succeed.

Figure 3.9a shows a simple Mozart four-note motive consisting of
two minor seconds on either side of a diminished third along with a
series of nontonal variations. This motive occurs in some form or
other in all of Mozart’s piano sonatas as a part of significant themes
as well as less important transitions and accompaniments. In all
probability this short figure is part of a larger signature rather than
a signature itself. Because this chromatic pattern cannot easily be
normalized to a diatonic scale, it matches more logically using inter-
vals (real approach to pattern matching) instead of pitches.

The *i-inversion* (i for “interval”) controller uses intervals
and allows for real inversions of patterns to succeed as matches.
Such inversions may pertain to one or more intervals of a pattern.

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.9 Nontonal variations of a possible signature

from Mozart's sonatas: a) Motive: K. 533,
second movement, mm. 63-64; b) Inver-
sion: K. 545, third movement, m. 30;

c) Augmentation: K. 279, first movement,
m. 6; d) Diminution: K, 283; first movement,
mm. 80-81; e) Interpolation: K. 309, second
movement, m. 27; f) Fragmentation: K. 310,
first movement, mm. 94-95; g) Order: K. 310,
second movement, m. 19.

a.
e =
1’4 1 | SN et | 14
== =
1 2 1
b.
. he =~
11 Al § 1 1
-1 2 -1
C.
fa) b o T
3 -2 1
d.
.J I! 1
0 -2 1

) 2 £ o oo »
D]
1 3 2 -1 1

f.
O prm—
)] 14 —

-2 1
g

THE PATTERN-MATCHING COMPONENT 95

Figure 3.9b shows an exact inversion of the entire motive shown in
figure 3.9a. The *i-inversion* controller setting is cumulative so
that a setting of 3 (three intervals for four pitches) would be
required to catch this variant.

Figure 3.9c shows a variation of the original motive, the first inter-
val being augmented by a half step. The *i-augmentation* con-
troller determines the number of intervals that can be augmented for
a match to take place (one in this case). The aforementioned
allowance controller determines the acceptable amount of inter-
val augmentation possible during matching (set to 1 to catch this
variation). The *i-diminution* controller is the opposite of the
i-augmentation controller in that it detects interval contraction
rather than expansion. Figure 3.9d shows the original motive with its
first interval contracted to a unison. The *i-diminution* con-
troller would need to be set to 1 to allow this variant with the
allowance controller set likewise.

The *i-interpolation* controller allows for intervening notes
between the principal notes of the motive being matched. The *i-
interpolation* controller is refreshed from melodic note to
melodic note rather than being cumulative. In Figure 3.9e, the original
motive appears as the intervals created by notes 1-2, 2-5, and 5-6.
The intervening notes are considered to be interpolations, and the
i-interpolation controller is set at 2 (the most number of inter-
vening notes) to allow this match to succeed.

The *i-fragmentation* controller catches patterns where one
or more notes have been removed from a variant. In Figure 3.91, the
first note has been extracted, leaving only the diminished third and
its resolution. The *i-fragmentation* controller would require a
setting of 1 to account for this missing note and allow a successful
match to take place. The *i-order* controller determines how criti-
cal the order of the notes must be for two patterns to match interval-
lically. Figure 3.9g shows an example where the first interval is
reversed. The *i-order* controller would need to be set to 1 to
catch this variant.

The first controller mentioned in this section, the *allowance*
controller, does not depend on the tonal or nontonal nature of a
match. There are other such general melodic controllers. For example,
the *contour* controller sets the amount to which the general
contour of two motives must conform to one another. Figure 3.10
shows a musical example where the variants follow the same basic
contour of the original but do not always follow the exact intervals,
only their directions. This example would require a *contour* con-
troller setting of 2 for the original motive to match this variant (to
catch the low B and Ff variances).

96

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.10 An example of contour from Chopin’s

Prelude, op. 28,n0. 6: a) Mm. 1-2.b) Mm.
3-4.c) Mm. 23-24.

a.
L
O J .
:91)111. P
i

b.
, "‘2 12.# il
D= ee s SR
n% I — 1
c.
a2 & -|F_ 11'.#“"*- |
'n; 1 —

The *rhythm* controller determines the amount to which rhyth-
mic matches alone can allow patterns to succeed. In figure 3.11, the
rhythm controller allows the duration match to supersede the
lack of exact pitch or interval match. The *rhythm* controller, if
set with a high enough number, overwhelms many of the other con-
trollers and should be used with great care. As will be seen, SARA
pattern matching may be switched completely to rhythm for the
detection of rhythmic signatures. Usually, however, rhythm pattern
matching succeeds in finding numerous examples of local motives
rather than more global signatures.

The *pattern-size* controller determines the size of the pat-
terns chosen for comparison. With the exception of the interpolation
and fragmentation controllers (which allow larger and smaller seg-
ments of music to be selected for comparison), the *pattern-size*
controller remains fixed during each pattern-matching attempt. The
pattern-size controller requires some experience, as a setting
too small will catch only parts of signatures and one too large will void
the potential of finding signatures at all.

The threshold controllers indicates lower (floor) or upper (ceil-
ing) levels of matches. The *floor-threshold* controller ignores
matches that do not achieve significant successful comparisons to
be considered signatures. The *ceiling-threshold* controller
ignores matches that, like scales or other simple patterns, occur too
frequently to be real signatures. Most likely settings fall between 5
and 10 for floor levels and between 20 and 30 for ceiling levels.

Figure 3.11

THE PATTERN-MATCHING COMPONENT 97

An example of rhythmic variations in
Chopin’s mazurkas: @) Op. 17,n0.2, mm.
1-2.b) Op. 17,n0.4, mm. 5-6.

qa.

The *variants* controller determines the depth to which signa-
ture variations can be plumbed to allow for variants of signatures to
be protected during recombinant composition. Set at =, this controller
protects all forms of the found signatures, whereas set at 0 it protects
only the original figure. Although these extremes provide good exam-
ples, usual settings are between 5 and 20.

As suggested by some of the previous examples, controllers usually
work in combination rather than separately. This is particularly impor-
tant in pattern matchers where patterns fail if they do not pass all
tests. Figure 3.12 demonstrates how pattern variations can success-
fully match using many controller settings. Finding the variational
aspects of this figure requires that a pattern matcher find the location
of the members of the measures of figure 3.12a in the subsequent two
examples without regard for rhythm and intervening notes. As previ-
ously mentioned regarding figure 3.7, the ear recognizes such note
combinations as obvious variants, although the eye (and indiscrimi-
nating computation) does not. The *p-interpolation* controller
would require a setting of 4 for either figure 3.12b or figure 3.12c to
match figure 3.12a, as both have cases with four interpolated notes
between elements of the melody. The third example points toward a
different ending note and thus would additionally require setting the
p-augmentation controller to 1 and the *allowance* controller
to 4. The *pattern-sizex controller would only need to be set to 9
(the number of notes in the original pattern) and not larger because,
as previously mentioned, the interpolation controllers allow for
attempted matches beyond the size of the *pattern-size* con-
troller. Finally, the rhythm pattern matcher that precedes the melodic
pattern matcher must be circumvented to avoid the match’s failing

28

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.12 Extended example of interpolation in

Chopin’s Nocturne, op. 65,no. 1: a) Mm.
1-2.b) Mm. 27-28. ¢) Mm. 45-47.

qa.
A1 > .
e — ——FFr— s ? 7
D] L T et p—]
b. 3 P
I 1. ™= [p—
— o) Fm:
T ks —t—1—1 ——
)] T - |
3 3 3
C.
A%; !Iﬁ lE @ w7 lsl r#\Y I ﬂr — |
1] N | {31
11 ! | I— : ‘lh/ " T |] 1] I
D) T i T i T a—

before the melodic process begins, as the rhythm of these exampiles is
quite different.

Melodic pattern matching is substantially easier than its har-
monic counterpart. To match melodic patterns, the program pattern
matches through pitch lists with patterns of varying sizes while
comparing the pitches or intervals in the context of the various con-
trollers. Finding the appropriate pattern size is obviously a critical
matter. However, experimentation with this and the other con-
trollers leads to a fairly straightforward pattern-matching routine.
Harmonic pattern matching requires a different approach.

Harmonic pattern matching relies strictly on intervals rather than
on pitch and intervals. Matches that are apparent to the ear may not
otherwise be apparent to a pattern matcher. Different inversions of
the same chords, with doubling at the octaves and manifestations in
different registers, combine to make harmonies that sound very sim-
ilar appear very different in numerical representation.

Defining what constitutes a chord can also be a complex matter.
Given that nonharmonic tones can occur at any time and that har-
monies can change at varying rates, just deciding what constitutes a
harmonic entity can pose serious problems. EMI takes the approach
that the attack point is the most important instance of a harmonic
pattern, as any nonharmonic tones present should generally agree
with another pattern for a match to take place. Note that harmonic

THE PATTERN-MATCHING COMPONENT 99

analysis (SPEAC), which could not function within such a simple
restriction, takes place separately from harmonic pattern matching.
EMI uses beats as the basis for harmonic rhythm. Beat definition
relies on the previously discussed clarification of databases (see
chapter 2) to ensure that harmonic comparisons will be valid.

The mechanics of refining EMI harmonic patterns include (1) count-
ing the intervals vertically in a chord (using minor seconds) from the
bass up, always using the bass note as reference; (2) reducing all ele-
ments (by subtracting 12) to less than 12; and (3) removing redundan-
cies. For example, all root-position major triads reduce to the two
intervals 4 and 7, minor triads to 3 and 7, and so on.

Figure 3.13 shows three variants of a harmonic cadential signa-
ture in Mozart piano sonatas (for more information on this Viennese
classical signature, see Cope 1991a, pp. 168-69). The *number-
present* harmony controller allows for matches when one or
more of the textures being matched differs in number by an amount
equal to or less than that of the controller setting. The *number-
present* controller is refreshed from chord to chord rather than
accumulated. The setting of 2 for the *number-present* con-
troller would capture the almost versions of the cadential signature
of figures 3.13a and 3.13b (differing by 11 and 7 in chord 1 and by 7
in chord 2 respectively), whereas a setting of only 1 would be
required for matching figures 3.13a and 3.13c (differing by 11 in
chord 1). Harmonic pattern patching also includes the *pattern-
size*, *threshold*, and *variants* controllers, which have
basically the same meanings as they do with melodic pattern match-
ing, though they often require significantly different settings.

Both melodic and harmonic controllers must be set separately
for each specific composer or idiom. The aim of properly utilizing
the full complement of controllers is to discover an efficiency curve,
or the levels just prior to that of diminishing returns. The most effi-
cient curve should have settings that will capture significant pat-
terns without also producing spurious ones.

The EMI melodic and harmonic pattern matchers have two
orders. The first order operates independently on each of the indi-
vidual works in the database. The second order operates on the
results of the first order, seeking patterns that are common to the
works in the database. The product of the first-order pattern
matcher can be conceived as a kind of image—a template of a work
expressed as a list of patterns and their frequency of occurrence.
The second-order pattern matcher compares these templates by
seeking metapatterns that represent the signatures of the composer/
idiom of the source music. These metapatterns are found, simply

100 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.13 Harmonic cadence signatures from
Mozart sonatas with reduced interval

analysis: a) K. 332, third movement, m. 35.

b) K. 332, second movement,m. 40.c) K.
311, first movement,m. 112.

q.
T P |
L "’,‘ [} 3 ."
Av.4
D] - %
N—
5 l.’\
9_-—1—-4—‘ n
h— L
—a
5 4
2
b.
/| 1
174 1] Y

q

—_

+H
M
Jwr-i

]
7
5
2
c.
O 8 | |
H— o—
'\I ﬂa
D) ~ e
r-J T
T 1 1
[
11
5 4
2

THE PATTERN-MATCHING COMPONENT 101

but elegantly, by a superimposition of the lists. Such superimposi-
tion of work images is the key to the process of signature detection
(see Cope 1991a, particularly chapter 5).

The product of the first-order pattern match process is a list of
lists that contain two important classes of information. The first
class is a list of pitch and melodic interval data and harmonic inter-
val data that represent patterns that have been discovered within
the boundaries prescribed by the matcher. The second class is a
number representing how many times each pattern has been discov-
ered in the first-order lists. These numbers are ranked from highest
to lowest accumulations.

With a large work, one may find as many as four or five thousand
instances or repetitions of a pattern at the beginning of the list to a
minimum of two at the end. Patterns highest on the list might seem
most likely to be signatures. However, these highly used patterns
are most often parts of the major themes of individual works and
are not signatures. True signatures more often fall in the middle
range of these lists. Those patterns with the lowest frequencies tend
to be insignificant.

The second-order pattern match first sums two or more first-
order lists, producing a list of the frequencies of the local patterns.
Many of the frequencies of patterns found in one work will remain
largely unchanged, whereas the frequencies of global signatures will
increase significantly. A superimposition function next reorganizes
the combined list into one that is ordered by the amount of change
rather than by total amount. Patterns whose frequency changes sig-
nificantly in the superimposition process are more likely to be signa-
tures than those with high totals but that do not change signifi-
cantly. Note that the combined total frequency of signatures may
still be substantially less than the total frequency of patterns local to
one of the works in the database: the amount of change is signifi-
cant, not the highest count.

When the second-order pattern match is complete, one must
decide where to skim off the actual signatures (“cream”) from the
local material (“milk”). Cut too deep into the list, and themes from
the individual works in the database are erroneously recognized as
signatures; cut too shallow, and the signatures are diluted. The
master-threshold~ floor and ceiling controllers perform these
operations. These controllers function exactly as the previously
described melodic threshold floor and ceiling controllers do.

Dealing with a list of various matched patterns leads to the ques-
tion of which is in fact the signature. Protecting all the matched
patterns can overprotect a database. However, choosing which of a

102 EXPERIMENTS IN MUSICAL INTELLIGENCE

W Controllers in SARA

matched set of patterns is the signature would require an incredible
amount of code as well as a significant amount of programmer guess-
work with the *variants* controller. EMI solves this problem by
cross-matching databases. This means that, although the patterns in
database “x” are matched against the patterns in database “y,” the pat-
terns in database “y” will also be matched against the patterns in data-
base “x.” Because different starting patterns can produce different
matches, the pattern that accumulates the most matches (within the
thresholds) will become the signature of choice—the one protected
from recomposition.

As mentioned previously, the calibration of EMI's pattern-matching
controllers is a time-consuming, exhaustive process. Often, chang-
ing one controller will counteract the effects of another, and I have
often found myself working at cross-purposes. Although the results
of such intensive research can be illuminating, the efforts expended
are often so monumental that one could hardly expect any but the
fanatical to become so engaged. Thus, SARA (the program included
on the CD-ROM accompanying this book) has a substantially
reduced set of controllers and thus a less effective pattern matcher.
However, the resulting matching process requires exponentially less
time to operate.

The controllers used in SARA are *intervals-off*, *amount-—
off*, *pattern-size*, and *threshold*. Limiting the number
of controllers for SARA helps to distinguish their use and effect.
Unfortunately, such limiting also hampers pattern matching for the
detection of more subtle signatures. SARA, unlike EMI, aiso uses
intervals exclusively for melodic pattern matching, eliminating the
time-consuming need for comparisons of motives to tonal scales.

The *intervals-off* controller dictates how many intervals
may be incorrect for a match to occur. Obviously, if this controller is
set too large, it might return an entire database as a set of matched
patterns. If *intervals-off* is set too small or set at zero, only
exact matches will be returned, often resulting in no matches. The
effect of the *intervals-off* controller parallels that of the
allowance controller in EMI ‘

The *amount-off* controller indicates how much an interval
may be incorrect for a match to take place. Setting this variable too
large allows distinctly different patterns to emerge from the pattern-
matching process. Setting this controller too small or at zero allows
only exact matches to emerge from the pattern-matching process.

THE PATTERN-MATCHING COMPONENT 103

Both *intervals-off* and *amount-off* work in serial; in other
words, if the amount an interval is off exceeds the level of *amount -
off*, the match fails regardless of the size of *intervals-of£f*.
Concomitantly, even meeting a liberal level for *amount-off*, an
interval will fail if *intervals-off* is zero.

The *pattern-size* controller indicates the number of notes
gathered in motives for matching purposes. The SARA pattern-
matching process is incremental rather than contiguous (i.e., pat-
terns are chosen with every successive note rather than by beginning
a new pattern after the first pattern terminates). The incremental
approach requires L x N (where L is the length of time to match one
motive and N the length of the motive) more time to process than
the contiguous approach, but the incremental approach finds many
more possible signatures in the process.

The *threshold* controller delimits the lower number (floor)
of matches for a signature to emerge. Thus, only those matches
that exceed the level of the *threshold* controller are returned
as potential signatures. The lack of a ceiling *threshold* con-
troller is due to the probable size (small) of databases usually
employed in matching using SARA. As stated previously, in circum-
stances requiring larger databases, both floor and ceiling thresh-
olds would be required for logical signature extraction from
matched patterns.

The variable Rhythm? (not a controller per se but useful to dis-
cuss in this section) allows for the finding of rhythmic (duration)
signatures. These signatures can be protected exactly as pitch sig-
natures are protected. The controllers just described play the same
role in pattern matching for rhythm as they do in pattern matching
for pitch. However, the degree to which some controller levels
affect the pattern-matching process must be severely exaggerated
in rhythm matching. For example, a level of 1 in the *amount-off*
controller for notes (i.e., a minor second deviation) is significant,
whereas it is negligible in rhythm (500 to 501 represents a duration
of only a thousandth of a quarter note). It should be noted that
in the current version of SARA, rhythm and pitch matching are sep-
arate. Patterns of either type can be matched and protected in
a database. SARA does not employ a composite of pitch and
rhythm matching because doing so requires such an extraordinary
commitment of computation time. As mentioned in the previous
section on EMI controllers, matching rhythm as a prelude to pitch
is possible and even typical where time and memory constraints
are not a consideration.

104 EXPERIMENTS IN MUSICAL INTELLIGENCE

A Sample
Pattern-Matching
Session

The phrases shown in figures 3.14a—c are from a Mozart database
and will serve as examples for pattern matching. The databases of
these phrases are slightly clarified (see chapter 2), but such var-
iations will not significantly alter the search for signatures. The
phrases shown in figure 3.14 were chosen specifically because they
have a distinct signature present. Such foreknowledge is not neces-
sary for successful pattern matching. However, as has been men-
tioned previously, pattern matching is most effective when using
music with a clearly recognizable style. Because such music prob-
ably has signatures, suspecting their presence is logical.

Note that no single set of controller settings exists that will work
for many different styles. In fact, resetting previously successful
controller settings is not generally useful even when pattern match-
ing different music by the same composer. However, if the music in a
loaded database has the same perceived style, one can usefully
begin pattern matching with controller settings similar to those suc-
cessfully used with music of that style and then set and reset the
pattern-matching controllers until signatures become recognizable.

Figures 3.15 to 3.20 present an example of a typical SARA pattern-
matching session. Following the settings shown in these figures when
the databases are selected in the order shown in figure 3.14 will pro-
duce the results shown here. The settings shown in figure 3.15 are
the default and produce the result shown in figure 3.16. The pattern
in figure 3.16 (found originally in figure 3.14a) does not seem particu-
larly recognizable as a Mozart signature. It is simply a common pat-
tern used by many different composers of Mozart’s time.

Figure 3.17 shows the setting of the controllers for a second
attempt at pattern matching. In this match, the number of the con-
troller *amount-off* has been reduced to 1 and the controller
threshold has been reduced to 2 to allow for more matches.
Raising and lowering controller levels requires a combination of
aural skills developed through practice. Figure 3.18 shows the pat-
terns found by pattern matching with the controllers set as in figure
3.17. Here, more patterns appear; however, again none are recogniz-
able as a complete Mozartean signature. Note that the patterns of
figures 3.18d and 3.18e are from the cadence of figure 3.14b and bear
a faint suggestion of a classical Viennese signature. However, neither
is complete and therefore might not be generally recognizable.

Figure 3.19 shows the setting of the controllers for another
attempt at producing a signature. In figure 3.19, the *pattern-
size* controller has been increased to 7 and *intervals-off*
reduced to 0 in hopes that this will allow a more complete pattern to
emerge. Figure 3.20 shows the recognizable signature that results

THE PATTERN-MATCHING COMPONENT 105

Figure 3.14 Mozart's sonatas: a) K. 283, second
movement, mm. 1-4. b) K. 330, third
movement, mm. 104 ff. and ¢c) K. 547
a, first movement, mm. 59 ff.
a.
A —~ &,
e e
> 1 T T T T o i iL
p N
e T T o
e w et -‘]. - _J. - 1 y)
Fa) e . & o | L
& —— e — = ==
P ~———
e

b.
o /. ~ ‘_h\ ./\ ~
'V T T :|‘; T T i T F E
) | I i 1 T i
B lj:f - T Idi t z
e : " = : Em————
/\
8 . e o . -|'-. £ - - o
(5 L E — T i — | I { ™ =ip_'_.
D = =
ol o o o . s 41 s
T 1 o »— y — = r“(TIP; !
C.
0 —

el
gyas

%
2
3
e
e
1@

v
<
%
N
N
—
-
N,

Figure 3.15 The default settings of the pattern

matcher.

Intervals off 1
Amount off 2
Pattern size 6
Threshold 3
Rhythm no

Figure 3.16 Results of an initial pattern match.

K‘:&ﬁ:\

» —ms
1 1

Y
»

Figure 3.17 \Variable settings for a second attempt at
paitern matching.

Intervals off 1
Amount off 1
Pattern size 6
Threshold 2
Rhythm no

THE PATTERN-MATCHING COMPONENT

Figure 3.18 Patterns resulting from a second attempt

at pattern matching.

Q.
|]
@ T | ‘ IF
)] ———
P
’
b.
A S
l.) T : - I
_ P
iy oo tot o o2
o ‘t,;iV — e —
C.
n ., &,
—— ,P o
S ' ————————
(\:5
1S — - | — T ‘9 '; i g
v
d.

107

108 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.19

Figure 3.20

A final setting for pattern matching for

signatures.

Intervals off 0
Amount off 1
Pattern size 7
Threshold 2
Rhythm no

Recognizable signature resulting from a
final pattern-matching session.

6 ===—rx

o ——— =
. TN
2 _f . |8

Y
»
T

e

N

from the match using the controller settings of figure 3.19. This sig-
nature is now a complete version of the variants shown in figure
3.18, and no further expansion of *pattern-size* is necessary.
The signature found here appears in the last two measures of figure
3.14b. It can be described as 1 -4 -3 -2 -1 1 in intervals beginning
on G§. Some of the other examples in figure 3.14 show variations of
this figure that are similar enough to be recognized by ear as vari-
ants of this signature and thus as probably responsible for its detec-
tion as a signature. For example, the last measure in 3.14a includes a
melodic shape and resolution of similar design. The last measure of
figure 3.14c is an almost exact duplicate (melodically at the octave)
of the found signature and most certainly was a significant factor in

THE PATTERN-MATCHING COMPONENT 109

Figure 3.21 SARA output using the signature of figure
3.

20.

Iy

——— T T
i I | I

11
(11
(11

¥y SvesessT = o3 %

e

the pattern-matching process. Note that signatures are situationally
sensitive, which means that it is important that those, for example,
that might appear more often near a cadence will do so again after
recombination. For this reason, both EMI and, to some extent, SARA
protect both signatures and their locations.

Figure 3.21 reproduces figure 1.22 and shows an example of SARA
recombinant music using the signature found in figure 3.20. Note
how the signature remains intact, whereas the prior material origi-
nates from a variety of sources (for details about locations, see fig-
ure 1.22). Signatures are protected from the recombinant process by
attributes in their objects (discussed further in chapter 4) and by
special use by the ATN program (see chapter 5).

Another example of signature use is seen in figure 3.22, which
shows an excerpt from a suite in the style of Rachmaninoff by -EML
This work is based on databases of Rachmaninoff’s Second Suite, op.
17, and his song “Before My Window,” op. 26, no. 10. Figure 3.22
(beginning with measure 158) shows one of the main themes that is
derived from the Rachmaninoff secondary theme of the introduction
of his op. 17 (shown in figure 3.23 beginning at rehearsal mark 3). The
melody of both examples occurs in the right hand of piano 2 (lower
system). One of Rachmaninoff’s signatures here is the harmonic pro-
gression of ii-V-ii-vi-IV-ii-V and so on. In SPEAC symbols, this

111

THE PATTERN-MATCHING COMPONENT

EXPERIMENTS IN MUSICAL INTELLIGENCE

110

Figure 3.23 Rachmaninoff, Suite no.2,0p. 17, first
movement, mm. 68-73.

Rachmaninoff Suite for Two Pianos.

Figure 3.22 An example (mm. 158-70) from the EMI-

T (| 3 Iy
FE BT FD T 55
Il w_w . el R 1 1] il {%. lﬁ!e 1 iE
I I - R/ I e pui
it (7 | - il I —es D gl [8 it
u-wL g R I [T ST
1N TTe. 1o} e LG
ﬁl . O | it 13 N 1o || . ImeFx. L 1R
A i Wi Il o
3 QD |TTTele- [TIT®T$! nyt M- I-_ L 'a Bana
(LS ™| 998 | « 1 i |0F il : | Ihiké
L EINIL I3 L
iy iy | f¥- .
.|M+. :-Hj | i dloh ! -H4 IG_L{ -”_ H..# |I|1H B HIH_
| _- 1Rt Il il | | FIVEL R | —etrer sl
1469 Hﬁi led —TOST$! I .. Wm _ H ..] ,.4” H_
e | ool s Y | | % el
% T$tTh 11 |dadall u. .4‘# L . P M
NS | 1 RS- e
k _Ml “ 1_ fur.rlq H 0 Lv1| —1 .‘. —Hn R —Tem
o &[] 1 K= 1 M_..érw ! S} | I :] 311
!ﬁ”ﬁmv NEe DL _ﬁ- . [l] l) H
E 3 s 112 U 1 P 1 B
e e} DN NEe ® < NEe <&je
14 _ I T
Hﬁu L: * [| |
r I | 11
i M i 1_ -_ o|i|® _HH el —Te[T®
BN | ,rlm aolel allal e e S
i i iy I
f- _m i L T _H Qe .
! il 1l I N
I il f lP T 9k fHem ollsll |1 H_#
alel T \ L I s 1] [!
2 | M [N I
[} m 499 ,-.L.i LTV 1) ﬁ4 fL
oinl o I Thy It i i
1l ! l $ il _
i il v olNl el |
IR S N i
AL |l NS [| JRl MY A R
I i ﬁ] s [el
_ﬁ 9] 11 H ﬂ.&.bwll ‘r in.]l —TeRTh _ﬁ |
N\ I il] I N\ 11 H
| 4
[| Wil Hhi) i
il | 1l IN xq
! ® .7 le g B 1.4.! s
Nje e <& ‘ _ﬁ |
- S i 1 1 N O bing
% % DMEre <NMEle DEe <NEle

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.23 continued.

THE PATTERN-MATCHING COMPONENT 113

measures of Rachmaninoff’s music for two pianos coded into the
EMI databases for such contiguous music to be the result of chance.
Likewise, there are too many conditions inherent in EMI's code to
allow three measures of the original to exist side by side unless, of

7O —
LM §]
fo ° © course, this example is a signature: a harmonic and melodic trait of
dim Rachmaninoff found in more than one movement of the original
J_ suite. In the eighth measure of the EMI imitation, the music returns
4 g e e = f £ ﬂ' WI' {0—_2'—!! rj" }a_'_p il to recombinant techniques, and the music is derived from else-
e e —— where in Rachmaninoff’s work.
This example demonstrates how subtly signatures can be
T T TN embedded in otherwise completely recombinant -examples. This is
e —— HiL 4——0‘—.L ‘f 3{ i i } not the case, however, in the example of EMI imitation in figure 3.24.
—_—— LA S o = i—.ﬁ.—i— The music in measures 246 to 248 is a metric transposition of the
dim passage shown in figure 3.25 from the original Rachmaninoff, begin-
> > = — L. — | ning three measures before rehearsal mark 2. Note that the music in
e = e —— T oo oot the previous measure 244 of the EMI example is in a different key
a = - o 5 = oo and of a much different character than the music in the measure
- 4 that follows. This preparatory music is also much different than the

equates to P2-A1-C5-C-P1-P2-Al. In root intervals, this progres-
sion moves downward by fifths and thirds. It is also cyclic in that,
once begun, it can continue in groups of five chords indefinitely
(though Rachmaninoff is not prone to excessive repetitions). These
progressions can be found in many of his works and, when found by
EMI as a signature, are kept relatively intact, as in figure 3.22.

Figure 3.24

music that precedes the Rachmaninoff original. Apparently, the sig-
nature here is of sufficiently unique character to require grafting at
what the program considers an appropriate moment rather than

Another example (mm. 245-49) from the
EMI-Rachmaninoff Suite for Two Pianos.

The first measure of the EMI imitation of figure 3.22 is very nearly BV e o -
a literal copy of the first measure of the original music in figure 3.23 b . ~ &
and may be a matched signature itself. However, the second measure ‘Q_DM—JL— % : :
of the EMI imitation is a transposition of the fifth measure of the s : :] — i —_ — =
Rachmaninoff example and typical of EMI recombinancy (note the v - ~
small variations in the accompanying parts due to recombinancy on
sublevels, discussed in chapter 5). The third measure of the EMI imi- 4] W = - — = !
tation in figure 3.22 is a near exact repetition of the Rachmaninoff - — i s g
third measure in figure 3.23. The fourth measure of the EMI Rach- == v___ . :
maninoff imitates the tenth measure of the original music, again an B
example of EMI recombinancy. — - = - :ﬁ 7
All this music is a clear example of EMI's recombining the original 0 3 i_.a‘ =\1 g
Rachmaninoff with slight variations. However, with the fifth and
sixth measures of the imitation in figure 3.22, the process takes ~
another route. Here, the music of the imitation reverts to the fifth, yid ! = } : — }
sixth, and seventh measures of the original, as shown in figure 3.23. 5 te Eai = = I & =+
This type of continuation is no accident; there are simply too many b h# jvj ;_% E v &
Se—

114 EXPERIMENTS IN MUSICAL INTELLIGENCE
Figure 3.25 Rachmaninoff, Suite no. 2, op. 17, first
movement, mm. 35-46.
35 ==
AL] ™ e, g b he & £
oF %ﬁ;/ | — —
2 e = opfelol) I #E £ ie
o L owor o ——
Siigaan et aE *
>/__
ﬁ ”] %$ 18} en— 1 s) I T 1 T
—= et =
Ol 1 1 1 IF 1 1 ﬂ_ I. b; I
E= T Ao e =
#3392 +9°7 39 e i
> 8va _______________________ -
" f “ 8 o > — -
o = I [= < == S 3 4%
mf

THE PATTERN-MATCHING COMPONENT 115

the more natural threading found in figure 3.22. However, on hearing,
the music in the EMI-Rachmaninoff seems natural to the style, sug-
gesting that it may not be unlike Rachmaninoff to flagrantly force sig-
natures into place. Rachmaninoff’s “Before My Window” (see figure
3.26) for soprano and piano on Galinka’s text provides signature veri-
fication for figure 3.25 and, as previously mentioned, was another of
the works in the EMI database at the time of composition.

Figure 3.27, a third example from the EMI-Rachmaninoff Suite,
demonstrates how melodic signatures can be divorced from their
accompanying environments to create stylistic variations of merit.
Figure 3.28 shows part of the original Rachmaninoff Suite third move-
ment (beginning 11 after rehearsal mark 20), which was included
in the database for the EMI imitation. The melodic signature begins
on beat 2 of measure 55 in figure 3.27 and continues through mea-
sure 59. This melody is a transposition (down a diatonic step) of the
original Rachmaninoff, beginning on the first beat of measure 28 of
the example. Note that the harmonic functions of the EMI-Rachmani-
noff do not follow the original and appear to be modulating during
the example. The figurations of the original Rachmaninoff are lost
either because the music here is from a different place or, as is often
the case, because the database is not exactly the same as the music
(for a discussion of the various ways databases are clarified, see
chapter 2). Regardless of the singularity of the signature, it flows
lyrically and simply into the melodic line.

&.%tli — .%.#! . T
s T ql 1 l 1 71 II ll
= — % s 2 v = s
= = : — : —
'v‘,: i'r [@] [} d‘:_'ﬁ'._i# ii!'
ﬁ \C/A\ ———————]

1
T

Figure 3.26 Rachmaninoff, Before My Window, op. 26,
no. 10, for voice and piano, mm. 14-15,
044 J; . -~ —
&b e
[r
sweet - ness sefs my sen - ses
= : I
i T T ¥ '
P 3
" > T 3

117

THE PATTERN-MATCHING COMPONENT

-

movement, mm. 28-31.

Figure 3.28 Rachmaninoff, Suite no.2,0p. 17, third

— T
£ 4

b

v

AV A Y

55

EMiI-Rachmaninoff Suite for Two Pianos.

Figure 3.27 Another exampie (mm. 52-59) from the

EXPERIMENTS IN MUSICAL INTELLIGENCE

116

+
ol q N ¢
Y (1
.U.L}r
kﬁ» = o/l .
U (153 Lt " !
4 Ly
9
X3
qd
il] 19l 19
e '\ g
| U
(g
. o
1 Jef B
o L1 . \hf. ®
e | e
3
o [
I Tl o i
JE VTN KL
. \
ol [4 ~t o
\ .
d
Lot gl
-
)
L3I
] !
_ UL
ffll b ..w..f \nu.LUl m
3 MTh \n M TN
LN - L -
L KL L1
d e Hiels e
S — S — e
— o~ —
N
13
L 1IN rI
1%
o[t |o = e o{o| |o
QAR | [YR E e M
@ b W
i
WL N
oL e e
AJ.
HTe S
»
] 1: _
4t 1 il .ﬂp.
.Tf v
1l e
Ll')
XX
%l ||1'
Nl (@l .
¥ ekt ot |||7
L. L -h .l N -+
I3 ~ 1 ™~ |VIV IV.IV IVIV
i N b i N RL. N LN
NG o DEre N DEe

0
Z 17 -

118

EXPERIMENTS IN MUSICAL INTELLIGENCE

In each of the three examples from the EMI-Rachmaninoff Suite,
signatures play a significant role in the recognizability of Rachmani-
noff’s style. Whether threaded, spliced, or focused on a single aspect
of the music, pattern matching holds important stylistic music
together and helps maintain a significant degree of stylistic credibil-
ity in music that otherwise would suffer significantly from the recom-
binant procedures used in composition. Setting controllers appropri-
ately helps to guarantee that found signatures will be of a proper
length. This is important to ensure that signatures freeze a signifi-
cant portion of the original music to help style recognition and yet
not freeze so much music that the original work will be blatantly rec-
ognizable as a quote or make the recombinant music sound like a
pastiche of the database being used.

m PATTERN-MATCHING PROGRAM

The top-level function of the pattern-matching program is top-
level-matcher (shown in figure 3.29). This function takes a list of
phrase names as argument and returns a list of signatures in event
notation. Each signature listing is headed by the number of occur-
rences of each matching set of patterns. The function translate-

—
-,
w

III-
-«
>

CD-ROM

Pattern matching is a fundamental part of the composing
process in SARA. One can observe functions such as top-
level-matcher (shown in figure 3.29 with its subfunctions
shown in subsequent examples) by tracing logical functions
of the SARA program and selecting the appropriate menu
items under signatures. For those who wish to inspect or
revise its operation, the full code for this menu item is
located in the file called sara-match. For those interested in
testing their abilities to determine real Mozart from machine-
composed Mozart, the Hypercard program Is it Mozart is
located in the folder named “hypercard is it mozart.” This
program uses the Macintosh speaker rather than MIDI, so no
special equipment is required for performance.

Figure 3.29

1.
2
3
4.
5
6

THE PATTERN-MATCHING COMPONENT 119

The function top-level-matcher.

(defun top-level-matcher (database-names)
(rank-the-matches
(challenge-the-matches
(add-the-matches
(match-the-database-music (translate-to-events
database-names))))))

to-events in line 5 of figure 3.29 reassembles measure objects
(see chapter 4) for pattern matching. This reassembly is not com-
plicated or difficult, but it can be time consuming with longer
phrases.

The function match-the-database-music, in line 5 in figure
3.29 and shown in full in figure 3.30, accomplishes what its name
suggests: it matches the music in the selected databases using the
lower level function match-the-databases (in line 4 of figure
3.30) which utilizes the framework of the previously discussed
SARA controllers. The function add-the-matches, in line 4 in fig-
ure 3.29, adds matches that are similar enough to be counted as the
same. The function challenge-the-matches, in line 3 of figure
3.29 and shown in figure 3.31, compares the match numbers to the
threshold controller and returns only those that exceed its
value (see line 3 of figure 3.31). These surviving matches are then
sorted and ranked by the function rank-the-matches (line 2 of
figure 3.29) by combining those matches that are similar enough to
be counted as the same. This latter function is necessary because
the basic pattern matcher progresses through a composition with-
out removing previously matched events. Thus, a pattern that has
many occurrences can be searched for more than once and thus
appears in the output of challenge-the-matches as redundan-
cies. With the use of rank-the-matches, these redundancies are
removed so that only original signatures remain for placement in
the signature dictionary and for protecting in the database.

As previously stated, the SARA pattern matcher thoroughly
scans its argument for possible signatures by using an event-by-
event progressing window on the channel selected for matching.
This is an enormously expensive process in terms of both memory
and time. For example, using more than ten phrases in the argu-
ment to top-level-matcher causes most eight-megabyte com-
puters to stall during processing. Alternatives, such as accumulating

120

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 3.30 The function match-the-database-
music.

1. (defun match-the-database-music

2 (database-music &optional (length (length database-music)))
3 (1f (zerop length) nil

4 (append (match-the-databases (first database-music)

5. (rest database-music))

6 (match-the-database~-music

7 (append (rest database-music)

8 (list (first database-music)))

9 (next length)))))

Figure 3.31 The function challenge-the-matches.

1. (defun challenge-the-matches (finds)

2 (cond ((null finds) nil)

3. ((>= (very-first finds) *threshold*)

4 (cons (first finds)

5 (challenge-the-matches (rest finds) }))
6 (t (challenge-the-matches (rest finds)))))

patterns at termination points, forfeit many potential matches and
reduce signature output to only those patterns that happen to
match the termination points. This latter approach might randomly
coincide with a composer’s signature placement, but such is not
likely.

Pattern matching need not be an active compositional compo-
nent of an EMHike program. Indeed, pattern matching could take
place during analysis and the resultant signatures stored in the
phrase databases. This would save enormous amounts of time.
However, pattern matching is a personal process with different pat-
terns interpreted as signatures depending on the user. Therefore,
however long the process may take, pattern matching should be
a session-to-session variable. Users who have fixed notions of sig-
natures and who wish to bypass the often exhaustive pattern-
matching process can save and load signatures via the signature-
dictionary interface in SARA. Although such saving and loading
does not alter the task of protecting signatures in the currently

THE PATTERN-MATCHING COMPONENT 121

loaded databases, it does nullify the need to actually pattern match
prior to composing.

As described earlier, the EMI and SARA pattern matchers are sen-
sitive only to pitch and duration. However, within these arenas these
pattern matchers are extremely versatile. Although the examples
given are from Western musical traditions, these pitch- and duration-
based programs have proven surprisingly successful in deriving sig-
natures from non-Western idioms (i.e., ragas and Balinese gamelan).
Only when patterns are deeply hidden (e.g., when they reside in
more than one voice or channel) are weaknesses in the system
apparent. Again, many musical styles are recognizable to the ear for
reasons other than pitch and duration (e.g., timbre, instrumentation,
dynamics, etc.), but the pattern matchers described here are not cur-
rently appropriate for them.

The EMI and SARA pattern matchers, as analytical tools for music
theoreticians and educators, may help solve questions of style that
have formerly been considered only in subjective and intuitive
terms. EMI, for example, has been used to identify the distinctive
signatures of specific composers, trace their influences, and exam-
ine their development over time. These programs should also
enable researchers to study formerly intractable problems, such as
investigating musical “what if” hypotheses (what if x had been influ-
enced by y; what if z had lived longer; etc.).

As mentioned earlier, the signatures detected by the pattern
matcher, when applied to a creative and recombinant composition
program, can replicate musical style convincingly. The results of
these replications may challenge one’s aesthetic and philosophical
premises concerning the limits of mechanical intelligence. However,
they also portend a powerful new tool for composers and music
researchers.

FOUR

The Object System

The EMI object system provides the analysis program with logical-
sized music objects for recombinancy and lexicons for storing those
objects as well as incipient gestures and cadences. The object Sys-
tem also enables the pattern matcher to protect signatures from
recomposition by toggling the appropriate object attribute, voiding
the need to protect note events individually and thus saving a signif-
icant amount of computer memory. Storing music in objects is both
conceptually and functionally logical.

When Charles Babbage designed his first computer for calculat-
ing numbers in 1856, the word computer was defined as a person,
“one who computes; a reckoner” (Webster 1828, p. 43). Babbage's
dream was to free humans from the drudgery of calculations so they
could accomplish higher aims—in his case, to navigate ships away
from reefs and to design and engineer safe bridges. But as non-
human computers evolved, so did the multiplicity and complexity of
the languages required to operate them, and new layers of instruc-
tions were necessary for even the simplest tasks. Users of these
computers often required more knowledge of how to operate the
computers than was required to calculate the complex mathematics
the computers were supposedly designed to make easier.

Researchers at the Palo Alto Research Center (PARC) in the mid-
1950s, even if they were unaware of Babbage’s vision, countered
with interfaces both intuitive and simple in conception. They hid
opaque instructions and dense data in what is now termed object-
oriented programming systems (OOPS). Their mice, menus, and win-
dows paralleled reality in such obvious ways that users could oper-
ate computers virtually without knowledge of low-level computer

123

124

EXPERIMENTS IN MUSICAL INTELLIGENCE

languages. In OOPS, complex instructions become a matter of point-
ing to and then clicking appropriate objects on the computer
screen. More than a hundred years after Babbage’s first computer
designs, our silicon-based computers have finally allowed us to
experience his dream: to escape being the “engines” and to become
true “engineers.”

Common LISP is a computer language not unlike those counter-
intuitive languages PARC intended to rectify. Common LISP, dis-
cussed at length in chapter 3 of Computers and Musical Style (Cope
1991a), relies on strict use of protocols and functions that act on
data. The Common LISP Object System (CLOS) is LISP’s counterpart
to other OOPS programs. CLOS is LISP’s OOPS.

CLOS is a standard for LISP object-oriented programming (Keene
1989; Lawless and Miller 1991). Like Common LISP itself, CLOS was
designed to replace the plethora of object-oriented LISP extensions
developed in the 1970s and early 1980s. Although each of these
extensions was interesting and useful, their differences made com-
munication between programmers difficult at best. CLOS can now
be used by those who wish to write substantial object-oriented pro-
grams and expect them to have more universal value and not be
subject to the whims of temporarily in-vogue approaches.

CLOS was designed and initially implemented by the X3J13 com-
mittee (Bobrow et al. 1988), formed at the 1986 ACM LISP and Func-
tional Programming conference. As of the date of this writing, CLOS
has all but achieved ANSI standardization. This means that the high-
level documentation and testing required of approval by this board
confirms that CLOS will remain the official object-oriented extension
of Common LISP for many years to come. This is important when
one considers the amount of time and energy required to learn
CLOS. It is paramount that the program be supported in the future.

m OBJECT ORIENTATION

In traditional programming, functions act on data. Such programs can
be quite successful. For example, accounting and other mathemati-
cally based programs operate quite well in this kind of environment.
However, in music programs, and particularly in EMI, data and atten-
dant details for that data are arranged and rearranged in almost limit-
less orders to fit less certain goals. This recombinancy requires flexi-
bility. Traditional programming operates less effectively when data
must be compartmentalized and processed independently in this way.

THE OBJECT SYSTEM 125

In object-oriented programming, data is stored in objects with
information on how this data is to be used. Because this process par-
allels the manipulation of objects in real life, object orientation is
often referred to as real-world programming. Object-orientation serves
well for simulation programs in that objects work as independent
entities and as entities within a system: actors and re-actors. For
approaches like EMI and SARA which use recombinancy, object orien-
tation is a perfect environment. Recombinancy requires independent
entities that can be clearly defined during deconstruction and re-
assembled in many correct ways depending on the data and con-
straints each possess:

Object-oriented programming is a type of modular programming built
around abstract models of real-world systems . . . For example, a car
object might contain an engine, tires and a chassis. Each of these compo-
nents can be uniquely described . . . and manipulated independently or
as a part of the system. For example, we perform actions on the car as a
whole when we drive it but we view the parts distinctly when we take the
car in for service. (Lawless and Miller 1991, p. 1)

Metaphors for object-oriented programs abound. IRCAM (Institute
for Research and Coordination of Acoustics/Music, an important com-
puter music center in Paris) has used a common parallel: genetics. One
of its musical object systems (called Formes) employs object class
names such as grand-parent, parent, child, and so on (Rodet
1984). Other researchers take a more musical approach to their object
names as in conductor, orchestra, and player (Krasner 1980). Still
other researchers adopt names like piece, section (Pope 1991), and
so on. Whatever the example, the common concepts are hierarchy and
inheritance. Each object name in the hierarchy (called class) has cer-
tain attributes that are inherited by all subsumed object classes.

Figure 4.1 shows a very simple hierarchy of musical objects. To
the right of each object class is an attribute name (e.g., “name,”
“number,” etc.) of that class and a distinguishing characteristic of
that attribute name (e.g., “symphony,” “1,” etc.). Here, each subse-
quent (lower) object class inherits information from classes higher
in the hierarchy. Thus, the measure object “duple” possesses all
the information that precedes it in the hierarchy. This voids the
need to redundantly store such information in each object sepa-
rately.

Storing data in objects is an efficient way to make this data avail-
able for a wide variety of computational operations. Because data
stored in objects follow a hierarchical model, search procedures
and similar processes are simplified. For example, finding the num-

“,on

ber of A1 SPEAC functions in section “a” of Symphony 1 (see

126 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.1 A simple hierarchy of musical objects.

Name *symphony"

Number *1"

Letter "a"

Type ‘antecedent"

Meter "duple”

THE OBJECT SYSTEM 127

figure 4.1) can be a nightmare when data has been contiguously
amassed in a single location. Even if the data has been organized
clearly by measures (no guarantee in non-object-oriented data-
bases), just searching all the various parts of the “a” section could
be a nontrivial task. With object orientation, such a search routine is
merely a matter of retrieving the desired objects from the section
object where they are logically stored.

As a further example, the Musikalisches Wiirfelspiel on the CD-
ROM that accompanies this book stores all the measures of eleven
possible dice throws in a single location. The program then ran-
domly chooses a measure from this collection of measures each
time it “composes” a new composition. This is not an example of
object orientation, nor need it be, as the choice of measures here
requires nothing more than the equivalent of a throw of dice. Imag-
ine, however, that the list of measures were a phrase from a work
being used for recombinant music generation and that elements
such as chord analysis, accompaniment type, and voice connectiv-
ity were needed for each measure. Even if such an analysis were
completed prior to composition and stored with each measure,
accessing the information, even in relatively short phrases of music,
would be an incredibly time-consuming and potentially mistake-
ridden task, to say nothing of the nearly unreadable nature of the
long lists of data. Debugging such lists would require herculean
feats of data searching, separation, and recognition. OOPS, on the
other hand, ensures that measures are stored, along with their
analysis, as separate objects and collected in appropriate lexicons
where they can be sorted, accessed, rearranged, debugged, read,
and so on in extremely user- and program-friendly ways.

In programs that employ recombinant approaches to composi-
tion like EMI and SARA, object orientation is almost a requirement.
Just accessing single extended lists of events for making logical
choices of given measures would be an incredibly complicated task.
Augmented transition networks (see chapter 5), which require con-
tinuous sorting and resorting, exponentially multiply such complex-
ity. Problems associated with cataloging and accessing incipient ges-
tures and cadences would likewise increase.

The object-oriented software on the CD-ROM that accompanies
this book (SARA) takes the form of phrase and measure (of varying
meters) as names of its object classes. It could well have taken the
forms shown in figure 4.1. In fact, a more extended form of EMI does
just that. Such delineation more clearly denotes the hierarchy (large
to small) and nature of the classes. However, for the purposes of
explanation and for the condensed form SARA takes, phrase and

128

EXPERIMENTS IN MUSICAL INTELLIGENCE

measure are sufficient. Classes of objects that themselves have sub-
classes are called superclasses. Thus, in figure 4.1, all but the last
example are superclasses. The phrase class in the accompanying
software is a superclass, whereas, for example, duple-measure is a
subclass with no inheritors.

Classes of objects have attributes. Attributes in CLOS are stored
in slots, which are defined locations for data specific to a given
attribute. In figure 4.1 all the terms to the right of the objects are
attributes. The information in quotes to the right of the attribute
names are the assigned values associated with these names. In
SARA, the class of objects called phrase contains attributes for its
name, mode, tempo, meter, and so on. The class duple-measure
automatically inherits the values for these attributes plus the values
for attributes of its own such as its music, analysis, destination, and
so on. One of the advantages of inheritance is that it negates the
need for duplication of attributes: once an attribute is defined for a
superclass, it need not be redefined for any of its subclasses. Like-
wise, all the subclasses of this subclass will inherit the attributes of
all their superclasses, voiding the need to repeat information that is
in common between hierarchically associated subclasses.

Figure 4.2 gives an example of how one would create the classes
of objects shown in figure 4.1. The LISP macro defclass defines a
class or superclass of objects. Its argument (in parentheses to the
right of the name of the class) is the name of any superclass(es) to
which it belongs. Thus, in this example, movement is a subclass of
work and section a subclass of movement . The list of descriptors
following the first line of each defined class of objects comprises its
attributes, which will be described in more detail shortly.

Specific examples of classes are called instances. Instances of
classes possess all the attributes provided by their associated class
and all superclasses to which they belong. Figure 4.3 shows how
instances of objects are created using setq and make-instance.
Inheritance and, by inference, hierarchy, can be shown by using acces-
sors of the superclass on these instances. A sample run in figure 4.3
shows how these accessors work. Accessors act like functions in LISP.
However, they are not defined by de fun, but achieve function-like sta-
tus by their association with their respective attribute in the def-
class description or are inherited from a superclass of that class.
Thus, name acts like a function in figure 4.3 by virtue of its being
defined as an accessor in the superclass work in figure 4.2. The
same is true of the accessors letter from the superclass move-
ment and phrase-type from the superclass section.

The instance of measure here has inherited all the attributes of
its superclass and those of its own class. However, phrase has none

Figure 4.2

THE OBJECT SYSTEM 129

Defining the classes of objects shown in
figure 4.1.

(defclass work ()
((name :initarg :name :initform 'symphony :accessor name)))
#<STANDARD-CLASS WORK>

(defclass movement (work)
((movement-number :initarg :movement-number :initform 1
raccessor movement-number)))
#<STANDARD-CLASS MOVEMENT>

(defclass section (movement)

({(letter

rinitarg :letter :initform 'a :accessor letter)))

#<STANDARD-CLASS SECTION>

(defclass phrase (section)
({phrase-type :initarg :phrase-type :initform 'antecedent
raccessor phrase-type)))
#<STANDARD-CLASS PHRASE>

(defclass measure (phrase)

((meter

rinitarg :meter :initform 'duple :accessor meter)))

#<STANDARD-CLASS MEASURE>

of the attributes of measure (its subclass), as inheritance proceeds
in only one direction in class hierarchy. As another example, ob-
serve how, in query (d) of figure 4.3, the instance of measure (the
lowest rung of the hierarchy in figure 4.1) has inherited the attribute
of name from the class work (the highest rung of the hierarchy in fig-
ure 4.1) without any explicit assignment of this information.

As was shown in chapters 3 and 4 of Computers and Musical Style
(Cope 1991a), LISP promotes the idea of small, simple functions
contributing to more complex combinations of functions. This pro-
motes clarity of programming. It also makes use of the fundamental
concept of small, specialized functions operating in concert to
achieve powerful results. In LISP-like form, CLOS allows classes to
be defined simply even though their manifestations may be com-
plex. The functions that contribute to the more complex natures of
specific instances of classes are called generic functions.

Generic functions differ from standard LISP functions in an im-
portant respect. Whereas a standard LISP function executes a sin-
gle body of code on its arguments, generic functions have code
that varies depending on the classes of their arguments. Generic

130 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.3

Instantiating the classes of objects shown
in figure 4.2.

a.
(setq my-work (make-instance 'work))
#<WORK #x39D619>

b
(name my-work)
symphony

c.
(setq my-measure (make-instance ‘'measure))
#<MEASURE #x397BB1>

d

(name my-measure)

symphony

e.

(movement~number my-measure)
1

f.
(letter my-measure)
a

g.
(phrase-type my-measure)
antecedent

functions are sometimes called polymorphic functions for this reason
(Gabriel, White, and Bobrow 1991). For example, a generic function
called play could be used to play a single note (in the case of a call
to an instance of a class of notes), a measure of notes (in the case of
a call to an instance of a class of measures), or a complete phrase
(in the case of a call to an instance of a class of phrases). In each of
these cases, the data called by play would necessarily be in a dif-
ferent form (i.e., an event in the case of an instance of note, a list of
events in the case of an instance of measure, etc.). The generic
function would be called play in all three instances. However, the
code that would be implemented will depend exclusively on the
class of its argument. In other words, three different generic func-
tion definitions for play would need to exist.

THE OBJECT SYSTEM 131

This brief overview of CLOS should serve to introduce the reader
to the basic elements of LISP object orientation. However, each ele-
ment of CLOS requires more detailed explanation and examples as
they pertain to music and the EMI and SARA databases, as the fol-
lowing hopefully provides.

® CLASSES AND SUPERCLASSES

m SLOTS

As previously mentioned, CLOS allows one to build classes from
other classes (superclasses). These classes, often called subclasses,
may also inherit from more than one superclass, thereby inheriting
attributes of all their related superclasses. This is called multiple
inheritance. Such multiple inheritances have precedence require-
ments in order from left to right (precedence to the left) in the argu-
ment of the inheriting class. Figure 4.4 diagrams one such compli-
cated component system of superclasses and subclasses. For this
example, the superclass phrase and duple-measure are defined
in steps (a) and (b) as classes with no superclasses. In step (c), the
class mozart-measures is defined as having the two just-defined
classes as superclasses. Thus, as the queries of steps (e), (f), and
(8) prove, an instance of mozart-measures (here called my-
mozart-measures) inherits accessor functions and data from all
its superclasses. This diagram further demonstrates that there may
be many generations of superclasses, with the lowest subclass
inheriting attributes from all superseding superclasses.

Interestingly, CLOS is implemented in CLOS. That is, standard
CLOS object classes are themselves classes of other classes, with all
such classes descendent of a single unique class. In CLOS this
unique class is t (or true), which has no superclasses and which is
a superclass to all classes except itself. This idea of writing CLOS in
CLOS is called metaobject protocol.

Figures 4.5a—c show the lower level class- and object-defining func-
tions used in one version of EMIL The function define-phrase-
class in figure 4.5a uses make-beat-objects (shown in figure
4.5b) to move incrementally through the beats of music in its

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.4 An example of multiple inheritance using
the objects shown in previous figures.

a
(defclass phrase nil
((creator :initarg :creator :initform nil :accessor creator)
(matching-line-number :initarg :matching-line-number
:initform 1 :accessor matching-line-number)))
#<STANDARD-CLASS PHRASE>

b
(defclass duple-measure nil

((music :initarg :music :initform nil :accessor music)))
#<STANDARD-CLASS DUPLE-MEASURE>

C.
(defclass mozart-measures (phrase duple-measure)

({date :initarg :date :initform 1789 :accessor date)))
#<STANDARD~-CLASS MOZART-MEASURES>

d
(setqg my-mozart-measures (make-instance 'mozart-measures))

#<MOZART-MEASURES #x3DA559>

e
(date my-mozart-measures)
1789

f.
(music my-mozart-measures)
NIL

g
(matching-line-number my-mozart-measures)

1

argument. The function make-beat-objects uses make-
instance (line 7) to produce the new objects. The object EMI-
object (see figure 4.5¢) defines objects as a series of recordkeeping
slots with embedded code. Because these recordkeeping slots
include many necessary repetitions, they are not all shown in figure
4.5¢ but are listed by category below:

THE OBJECT SYSTEM 133

Figure 4.5 EMI object definitions.

a
(defvar object nil)

1. (defun define-phrase-class (name-of-phrase)

2. (set (concat name-of-phrase '-beat-objects)
3 (make-beat-objects name-of-phrase

4 (eval-everything name-of-phrase))))

. (defun make-beat-objects
(name-of-phrase phrase &optional (number one))
(if (null phrase) nil
(progn (set object (concat name-of-phrase '- number))
(set (concat object '-beat) (first beats))
(set (concat object '-second-beat) (second beats))
(cons (set object (make-instance 'EMI-object))
(make-beat-objects name-of-phrase
(rest phrase) (1+ number))))))

WO TN WN D

. (defclass EMI-object nil
((precept-slot-ties :initarg :precept-slot-ties
:initform ° (get-ties (eval
(concat (quote ,object) '-beat)))
raccessor precept-slot-ties)

AU WN RO

£'a CD-ROM

Figures 4.2 to 4.4 can be usefully run in the SARA Listener win-
dow, as can figure 4.12 with appropriate databases loaded.
The files sara-objects and sara-menu provide examples of
defining and calling objects in CLOS for music and windows,
respectively. Writing new code for user-defined object classes
and superclasses that inherit and have slots and methods will
enhance the reader’s understanding of how objects function
within a hierarchy and provide a perfect environment for
recombinancy in applications such as EMI and SARA,

134 EXPERIMENTS IN MUSICAL INTELLIGENCE THE OBJECT SYSTEM 135

1. Precept (short for preinception) slots include information about ties Figure 4.6 Queries affer a run of define-phrase-

(shown), first notes of each voice (precept-slot-first-notes), class.

range of each voice (precept-slot-tessitura), analysis of SPEAC

function (precept-slot-function), and accompaniment (precept- (precept-slot-first-notes 'mozart-pf-one-281/3/1)
slot-figuration) such as alberti basses. (get-first-notes (eval (concat (quote ,object) '-beat)))
2. Incept (short for inception) slots, or the music of the object itself,

include pitches (incept-slot-pitches), durations (incept-slot-~ (eval (precept-slot-first-notes 'mozart-pf-one-281/3/1))
durations), dynamics (incept-slot-dynamics), and articulations (C4 E3 C2)

(incept-slot-articulations) of all voices.
(eval (postcept-slot-next-notes 'mozart-pf-one-281/3/1))

3. Postcept (short for postinception) slots include information about (R R C2)

the beat that follows the beat in the original music, including post -
cept-slot-ties, postcept~slot—-next-notes, postcept-slot-
tessitura, postcept-slot-function, and postcept-slot-
figuration. P1

(eval (precept-slot-function 'mozart-pf-one-281/3/1))

Each of these recordkeeping slots is represented by embedded code
(shown following the :init form keyword in figure 4.5¢). This embed- Figure 4.7 SARA definitions for the classes phrase
ded code remains unevaluated until an object instance is required to and duple-measure.
produce data. Such code can then produce significant amounts of
context-sensitive data. Embedded code avoids possibly redundant
data and huge data-laden objects in memory. The use of the LISP
backquote macro here ensures that all but the object’s own name (as
in objecf) remain unevaluated at the time of the object’s creation.
Figure 4.6 shows a few calls to the results of define-phrase-
class. Note how using the accessors produces only lines of code.
The evaluation of that code produces the data, which are not present
in the object itself, thus the use of eval here. Using object systems
such as the ones in EMI and SARA for storing groupings of notes
larger than two- or three-note motives (such as measures) but less
than phrases avoids huge lists of data where access is difficult and
time consuming.

1. (defclass phrase nil

2 ((creator :initarg :creator :initform nil :accessor creator)
3 (matching-line-number :initarg

4. :matching-line-number :initform 1

5. raccessor matching-line-number)

6 (mode :initarg :mode :initform 'major :accessor mode)

7 (tempo :initarg :tempo :initform 60 :accessor tempo)

8 (meter :initarg :meter :initform nil :accessor meter)

9 (measures :initarg :measures :initform nil

10. raccessor measures)))

. . - . (defcla le-m r hrase

Figure 4.7 gives the definitions of the superclass phrase and one 1A cLass dl.lp seTmeasure (p -as) , ,

. . . 2 ({music :initarg :music :initform nil :accessor music)
of its subclasses, duple-measure, as used in SARA. The nil argu- . L ,

. . 1 . 3 (match? :initarg :match? :initform nil :accessor match?)

ment following the defclass of phrase indicates that this class of , o) T ,

R . R 4. (analysis :initarg :analysis :initform nil
objects has no superclasses. The sublists that follow this are slots)

. o ses e o 5 raccessor analysis)
that have names (first entry) followed by a series of initialization , , o , , . ,
s oere s 6 (destination :initarg :destination :initform nil
arguments and initial values. Thus, the creator slot has the ini-) .
7 raccessor destination)))

tialization arguments and initial values: :initarg (the keyword
:creator), :initform (initial value nil), and :accessor (initial
value creator). Therefore, the creator slot’s initial argument,
:initarg, is the keyword : creator; its initial form, : initform, is
nil; and its accessor function name is creator. The importance of
these slots will become apparent as specific examples of these
classes are created.

136

EXPERIMENTS IN MUSICAL INTELLIGENCE

The slots in SARA’s phrase objects defined in figure 4.7 include
the previously mentioned creator as well as matching-line-
number, mode, tempo, meter, and measures. The creator slot
returns the name of the phrase and measure objects. The match-
ing-line-number slot is used by the SARA pattern-matching pro-
gram and indicates which channel should be used in searching for
signatures. The mode slot stores information regarding the mode of
the original music that can be useful for mode settings during play-
back. The tempo slot serves similarly to aid in tempo settings when
playing databases and recombinant examples from a given database.
The meter slot informs the user of the meter of the phrase and thus
the type of measure (i.e., duple, triple, etc.) objects it contains. The
measures slot stores names of all the measures associated with the
phrase object and is very useful for reconstructing phrases for play-
back and so on. All of SARA’s accessors use the same names as their
respective slots.

The slots in SARA’'s measure (mono, duple, and triple) objects
defined in figure 4.7 include music, match?, analysis, and des-
tination. The music slot stores the music of the measure object
as a series of events. If the match? slot is t, the object has been
matched as a signature. This indicates that the original measure
that follows it will follow it again during recombinancy so that signa-
tures will remain intact. The default value of match? is nil. The
analysis slot contains the SPEAC analysis of the measure object in
a list of identifiers with one identifier per beat of music. The desti-
nation slot contains a list of the first notes of the original following
measure and the SPEAC analysis of the original following measure.
The destination slot is one of the most important slots of the EMI
and SARA database storage systems in that it provides important
information for the ATN recombinancy program. The destination
slot can be expanded indefinitely (to the right) for deeper ATN and
more sophisticated composition.

As previously mentioned, both the beginning and the ending of
phrases are particularly important in the EMI and SARA recombi-
nant processes. Thus, both incipient and cadence (shown in fig-
ure 4.8) are subclasses of the superclass phrase. Both these sub-
classes have slots for music (events), match? (whether or not the
incipient measure or cadence is currently being protected from
recomposition), and the SPEAC analysis of the current measure by
beat. Each stored phrase of a database has representations of both
incipient and cadence. Because all music does not have impor-
tant or even extant pickup gestures or events, the incipient lexi-
con often does not contain any actual music.

THE OBJECT SYSTEM 137

Figure 4.8 The incipient and cadence

subclasses.

1. (defclass incipient (phrase)

W N

1
2.
3.
4

((music :initarg :music :initform nil :accessor music)
(match? :initarg :match? :initform nil :accessor match?)
(analysis :initarg :analysis :accessor analysis)))

. (defclass cadence ({(phrase)

({music :initarg :music :initform nil :accessor music)
(match? :initarg :match? :initform nil :accessor match?)
(analysis :initarg :ranalysis :accessor analysis)))

Lexicons are also important object classes in EMI and SARA. Lexi-
cons are not superclasses, nor do they belong to a superclass. The
incipience-lexicon in SARA contains a slot for first -measures
(incipient object names). The cadence~lexicon in SARA contains
slots for a half-cadence-1list and a full-cadence-list. The
half-cadence-list slot provides a list of the names of half-
cadence combinations of measures in the database. The full-
cadence-list slot similarly provides a list of the names of full-
cadence (or authentic cadence) combinations of measures in the
database. Figure 4.9 shows SARA definitions for both incipience-
lexicon and cadence-lexicon.

The slots in SARA’s standard lexicon class include mono-function-
list, duple-function-list, triple-function-1list, first-
note-list, and last-chord. The first three of these contain
appropriate lists of measure names, depending on the meter of the
stored measure objects. The first-note-1ist slot stores a list of
the first notes of each of the measure objects in the lexicon for easy
access. The last-chord slot likewise provides a list of last-chord
SPEAC analysis symbols for recombinancy.

Storing music in mono-measures can serve two purposes. First, it
can naturally store music in mono-meters such as , £, and so on, as
the name mono suggests. Second, however, and more important,
storing music in mono-measures allows for music in any meter to be
stored by beat instead of by measure. Although this can be quite
costly in terms of storage space (i.e., double and triple the number
of object instances are required of duple- and triple-measure
storage), it allows for a beat-to-beat rather than a measure-to-
measure recombinancy. This can be very useful when using small
databases, as composing can otherwise cause recognizability of the

138 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.9 The SARA lexicon with the cadence and

H = O 0030 U d wWN

o

1.
2
3.
4
5

N =

incipience lexicon definitions.

. (defclass lexicon nil
((mono-function-list :initarg :mono-function-list

sinitform nil :accessor mono-function-list)

(duple-function-list :initarg :duple-function-list

:initform nil :accessor duple-function-list)

(triple-function~list :initarg :triple-function-list

:initform nil :accessor triple-function-list)

(first-note-1list :initarg :first-note-list :initform nil

raccessor first-note-1list)

(last-chord :initarg :last-chord :initform nil

raccessor last-chord)))

(defclass cadence-lexicon nil
((half-cadence-list :initarg :half-cadence-list

:initform nil :accessor half-cadence-list)

(full-cadence-list :initarg :full-cadence-list

:initform nil :accessor full-cadence-1list)))

. (defclass incipience-lexicon nil
((first-measures :initarg :first-measures :initform nil

:accessor first-measures)))

larger database measures. It is also useful when composing short
phrases, where the number of larger measures required to compose
a phrase could be very small and thus curtail creativity.

Beat-to-beat recombinancy has been used in many incarnations of
EMI to great success, especially when employing complex ATN. In
fact, it is in this mode of operation that EMI and SARA have produced
some of their most interesting, creative music (see especially figures
5.11 and 5.12 and related text). Not only is the original database more
obscured by the small samples used for composition, but the oppor-
tunity for highly novel progressions is significantly multiplied because
the number of actual choices per phrase is so extensive. Users of
SARA can produce or revise databases in any metric form they wish
(see the user’s manual on the CD-ROM accompanying this book).
However, the one drawback with using beat-to-beat recombinancy is
that the time required for composition increases significantly.

m METHODS

THE OBJECT SYSTEM 139

One basic implementation of generic functions is called methods.
Methods contribute to making instances of classes by helping to
define certain aspects of that instance. As previously mentioned,
generic functions, and hence methods, are similar to LISP functions.
They take arguments and compute results. However, unlike normal
LISP functions, methods are not called directly. Instead, methods are
invoked during the existence of an instance of an object class. Also,
because methods are generic functions, methods of the same name
can perform quite differently depending on the class of objects being
instantiated.

A good example of method creation and use is the generic function
initialize-instance found in the file sara-menu on the accompa-
nying CD-ROM. This method is redefined several times in this file with
differing results, depending on the class to which the method per-
tains. In most cases, initialize-instance is responsible for des-
cribing instances of other classes, such as instances of button and
table classes in windows. Each description is different and modifies
the visual character of a different class of windows. Figure 4.10 pro-
vides an example of this behavior. Note that the function de fmethod
is the defining function for methods. This example of initialize-
instance is bound to the class about -window, which is assigned to
the temporary variable window. In this case, an instance of the
about-window class will possess an instance of another object class
called static-text-dialog-item, which, in this case, places the
name SARA in the window at the designated location (see view-
position in line 8). Other objects such as buttons, checkboxes,
tables, and so on can also be placed in windows in this manner.

Methods often relate to instance behavior. For example, before-
methods and after-methods are methods that are called at
instantiation and dissolution of object instances. Primary methods
tend to perform the primary functions of an object and exist between
before-methods and after-methods. Around-methods and
other forms of object-modifying methods also exist but are beyond
the scope of this text. Suffice it to say, methods present a crucial link
to understanding CLOS.

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.10 An example of the method

initialize-instance

. (defclass about-window {(window)

nil

(:default-initargs :window-type :document
:window-title "™
:view-position #@ (10 40)
:view-size #@ (300 180)))

b w N

. {(defmethod initialize-instance
((window about-window) &rest initargs)

(add-subviews window
(make-instance
'static-text-dialog-item
:view-font ' ("athens" 26)
:view-position #Q@(76 8)
:dialog-item-text
"SARA"M™)

P P oo Jo s w N

= o .

m OBJECT PROGRAM

Each database file in SARA contains instances of four different object
types: phrase, incipient-lexicon, cadence~lexicon, and mea-
sures. The first section of code in each database file defines a class
of the phrase object. This object contains all the normal elements of a
phrase object with the attributes that are common to all the elements
of the incipient gesture, cadence, and measures of the phrase. When a
database file is loaded, the phrase class for that database is defined,
including matching-line number, tempo, mode, meter, and so on.
Because measures (mono, duple, and triple) are subclasses of the
class phrase, each measure of the loading database phrase inherits
the current status of the just-defined phrase’s attributes. This inheri-
tance is class dependent. Thus, when another database is loaded with
different attribute assignments, the measures of that newly loaded
database will inherit those particular attributes, and the first-loaded
database will retain its initial attributes.

The second section of code in each database file sets the data-
base name and -incipient to the music of the pickup of the

THE OBJECT SYSTEM 141

phrase, if one exists. Because incipient gestures will be added to
incipient lexicons (i.e., groups of incipient gestures), the code must
first ensure that a lexicon object exists before attempting to add the
current gesture. Thus, each database has code to verify the exis-
tence of a lexicon and to create a lexicon if one does not already
exist. The statement that follows the incipient gesture-creating code
defines a network of SPEAC symbols useful for generating transition
network compositions. This data can also be useful for initiating
ATNs for more elaborate compositions.

The next section of code in each database file sets the database
name and -cadence to the music of the cadence of the phrase.
Because cadences, like incipient measures, will be added to lexicons
(i.e., groups of cadence gestures), the code must first ensure that a
lexicon object exists before attempting to add the current cadence.
Finally, each database file contains a series of measure objects that
contain attribute descriptions following previously described slots.
Furthermore, each measure instance-creating code is followed by
functions that add the measure name and its first notes to the associ-
ated slot positions in the appropriate lexicons (and create the lexi-
cons if they do not already exist).

Figure 4.11 shows how the superclass phrase and subclasses
incipient, cadence, and triple-measure occur in an actual
database. Figure 4.11a shows how the class phrase is defined for a
Chopin mazurka database. All the slots shown here are inherited by
the instances of triple-measure, one of which is shown in figure
4.11d. Instances of incipient and cadence are shown in figures
4.11b and 4.11c along with code to include them in their appropriate
lexicons (lines 3-5 of figure 4.11b and lines 7-9 of figure 4.11c). Note
that, in lines 9 to 15 in figure 4.11a, the measure names in the partic-
ular phrase are listed for phrase reconstruction for performance
and for setting multimeasure signatures into place. Figure 4.11 also
shows how lexicons store appropriate measures of music.

The function set £ (for “set field”) here takes as arguments a list
of the slot-value location and name of the field and the information
to be set into that field. Thus, the code (setf (slot-value
'chopin-maz-one-Cl-lexicon 'triple-function-list)...)
in lines 10-11 of figure 4.11d places “...” in the triple-function-
list slot of the chopin-maz~one-Cl-lexicon. Thus setf, un-
like setq, can assign and change an indefinite number of property
values of, in this case, the chopin-maz-one-Cl-lexicon. Further-
more, replacing “. . .” with a call to the function cons along with the
data of “. . .” and slot-value 'chopin-maz-one-Cl-lexicon
'triple-function-list adds “. . .” to the list in this location

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.11 A basic database for a Chopin phrase.

a
1. (defclass phrase nil

2. ((creator :initarg :creator :initform 'chopin-maz-one

3. raccessor creator)

4. (matching-line-number :initarg :matching-line-number

5. :initform 1 :accessor matching-line-number)

6. (mode :initarg :mode :initform 'major :accessor mode)

7. (tempo :initarg :tempo :initform 66 :accessor tempo)

8. (meter :initarg :meter :initform 3 :accessor meter)

9. (measures :initarg :measures :initform

10. '(chopin-maz-one-17/1/1-mea-6

11. chopin-maz-one-17/1/1-mea=-5

12. chopin-maz-one-17/1/1-mea-4

13. chopin-maz-one-17/1/1-mea-3

14. chopin-maz-one-17/1/1-mea-2

15. chopin-maz-one-17/1/1-mea-1) :accessor measures)))

b

1. (setq chopin-maz-one-17/1/1-incipient

2. (make-instance 'incipient :music nil :analysis nil))

3.(if (not (boundp 'chopin-maz-one-incipience-lexicon))

4. (setq chopin-maz-one-incipience-lexicon

5. (make-instance 'incipience-lexicon)))

6. (setf (slot-value chopin-maz-one-incipience-lexicon
7. 'first-measures)

8. (cons 'chopin-maz-one-17/1/1l-incipient

9. (slot-value chopin-maz-one-incipience-lexicon
10. 'first~measures)))

11. (setg chopin-maz-one-17/1/1-network

12. '{(cl cl cl ¢l pl cl al al al ¢l ¢l cl ¢l c1
13. cl ¢l pl ¢l al al al ¢l ¢l cl))

c.

1. (setg chopin-maz-one-17/1/1-cadence

2. (make-instance 'cadence :music

3. '((0 43 1000 3 100) (0O 65 1000 1 100)

4. N

5. (5000 64 1000 1 100))

6. ranalysis '"(al al al cl ¢l c¢l1)))

7.(if (not (boundp 'chopin-maz-one-cadence-lexicon))
8. (setqg chopin-maz-one-cadence-lexicon

THE OBJECT SYSTEM 143

Figure 4.11 continued.

9.

10.
11.
12.
13.
14.

d.

1.
2.
3.
4.
5.
6.

(make-instance 'cadence-lexicon)))
(setf (slot-value chopin-maz-one-cadence-lexicon
'full-cadence-list)
(cons 'chopin-maz-one-17/1/1-cadence
(slot-value chopin-maz-one-cadence-lexicon
'full-cadence-list)))

(setg chopin-maz-one-17/1/1-mea-1

(make-instance 'triple-measure
imusic ' ((0 48 1000 3 100) (0 76 1500 1 100) (0 79 1500 1 100)
(2000 79 500 1 100) (2500 75 500 1 100))
tanalysis '"(cl cl cl) :destination '((79 60 48) cl1)))

7.(if (not (boundp 'chopin-maz-one-cl-lexicon))

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

(setqg chopin-maz-one-cl-lexicon
(make-instance 'lexicon)))
(setf (slot-value chopin-maz-one-cl-lexicon
'triple-function-list)
(cons 'chopin-maz-one-17/1/1l-mea-1
(slot-value chopin-maz-one-cl-lexicon
'triple-function-list)))
(setf (slot-value chopin-maz-one-cl-lexicon 'first-note-list)
(cons (second
(first
(get~-sounding-channel 1
(slot-value chopin-maz-one-17/1/1-mea-1
'music))))
(slot-value chopin-maz-one-cl-lexicon
'first-note-list)))

rather than replacing it. Thus, in the case of figure 4.11d, the C1 lexi-
con of the chopin-maz section “one” may have an indefinite number
of instances of measure names representing appropriate measures of
like-functioned music. Data can be retrieved from any object in the
database through the accessor names in the class definitions. This
data takes the form of, for example, event lists (in the case of in-
stances of the subclasses of the object superclass phrase) or lists of
object instance names of measures (in the case of lexicons).

144

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figures 4.12a-e give an example of queries to a measure object that
shows the dynamic nature of inheritance. Queries (a) to (d) demon-
strate the inheritance of measure objects from the phrase objects
whose class is defined at the onset of each database file as in figure
4.11. Query (e) show how the music local to each measure object can
be retrieved for composition and performance (in conjunction with
the original order of measures stored in phrase objects).

It is interesting to note that only a fraction of the code in a data-
base is actual data. Most of the code sets the stage for recombinancy
by creating and storing the various data in objects in logical loca-
tions. This can be likened to a situation in which one has but a few
items of mail and thousands of mailboxes (a little data and lots of
organization). Yet, unorganized and poorly prepared data is of little
use, just as wrongly delivered mail has little value. EMI and SARA
both strive to create object systems that arrange data in ways in
which they can be most effectively utilized. This is the reason for the
enormous care in data delivery and the rationale for the structure of
the databases.

Figure 4.13 provides a good example of object use in composition.
This EMI-Bach invention is based on a database and resultant lexicons
of Bach’s Inventions 5 and 15 shown in figures 4.14a and 4.14b. Note
how the music in both hands of the EMI work imitates with variation
the Bach Invention 15 transposed up one step. Measures 3 and 4 of the
EMI-Bach borrow music from Bach’s Invention 5, with the right hand of
beats 2 and 3 of measure 3 of figure 4.13 drawn from the left hand of
the second half of measure 2 of figure 4.14a. Determining the sources
of measure objects in EMI recombinant music is often difficult because
of the number of interrelated processes involved. In some cases, it is
easier to observe measure grafting in the use of signatures, as seen in
the Rachmaninoff examples of figures 3.22 to 3.28.

Figure 4.15 shows how the original Bach looks in database
form; the objects and data are shown graphically to demonstrate
its separateness and location in lexicons. Figure 4.16 then shows a
possible source of the opening of the EMI-Bach imitation and how
it might appear as a result of recomposition (again shown graphi-
cally to indicate sources). One can imagine the huge number of
possibilities available when large numbers of databases are used
and thus the use of the words possible and might.

THE OBJECT SYSTEM 145

Figure 4.12 Queries to objects showing inheritance of
phrase information in measure objects.

a

3

b.

(meter chopin-maz-one-17/1/1-mea-1)

(meter mozart-pf-one-281/3/1-mea-1)

2

C.

(measures mozart-pf-one-281/3/1-mea-1)

(mozart-pf-one-281/3/1-mea-6 mozart-pf-one-281/3/1-mea-5
mozart-pf-one-281/3/1-mea-4 mozart-pf-one-281/3/1l-mea-3
mozart-pf-one-281/3/1-mea-2 mozart-pf-one-281/3/1-mea-1)

d.

(measures chopin-maz-one-17/1/1-mea-2)
(chopin-maz-one-17/1/1-mea-6 chopin-maz-one-17/1/1-mea-5
chopin-maz-one-17/1/1-mea-4 chopin-maz-one-17/1/1-mea-3
chopin-maz-one-17/1/1-mea~2 chopin-maz-one-17/1/1-mea-1)

(music chopin-maz-one-17/1/1-mea-1)

((0 48 1000 3 100)

(1000 55
(1500 75
(2000 64
(2000 79

1000 3 100)
500 1 100)
1000 2 100)
500 1 100)

(0 76 1500 1 100)

(0 79 1500 1 100)

(1000 64 1000 2 100) (1000 60 1000 2 100)

(1500 78 500 1 100)

(2000 55 1000 3 100)

(2000 60 1000 2 100) (2000 76 500 1 100)

(2500 75 500 1 100)

(2500 78 500 1 100))

146 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.13 The beginning of an EMI-Bach invention.

Figure 4.14

8\ I . —

bt e e, = = f g - L 4
V.4 E } SR | F 1 1 1 1 I | E—— 'I].i

& = = :

THE OBJECT SYSTEM

The openings of Bach's inventions: a) No.
5 (BWV 776).b) No. 15 (BWV 786).

%
INe]
N
e
<1y
M
N
ay
put)
Y
g
ey
e
Uy
e
~n
By

hod 1 v "Y
B =l i (73 4‘571'7 1 { I:
I
Tafor,s Feopnt
g;o l === 1 1)| 1 t r ; H 1 1]

0H
‘Ir - | T 1 1 -

o ———— R ——————u

j: £ e — e ——— ——
Z ¥ — IF ‘JIF L 1 iai — — L?-‘—f—‘l—
== X
v i 'I #‘ I

i P —1 r—

——

— — e =Y " flem
JI—] ’I I I O | Mﬁ; . I :
T e e e

===

148

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 4.15 Bach,Invention no.5,m. 1,in objects
(fransposed to C).

rmusic
((0 48 1000 1 100) (500 60 250 2 100) (750 59 250 2 100)
(1000 36 1000 1 100) (1000 60 500 2 100) (1500 62 500 2 100))
Bach-invention-5-mea-1

rmusic
((0 64 1000 2 100) (250 60 250 1 100) (500 59 250 1 100)
(750 60 250 1 100) (L1000 57 250 1 100) (1000 65 1000 1 100)
(1250 59 250 1 100) (1500 55 250 1 100) (1750 57 250 1 100))
Bach-invention-5-mea-2

THE OBJECT SYSTEM 149

Figure 4.16 One possible derivation of the EMI-Bach
Invention.

rmusic
((0 48 500 1 100) (500 72 250 2 100) (750 71 250 2 100)
(1000 52 1000 1 100) (1000 72 500 2 100) (1500 67 500 2 100))
Bach-invention-15-mea-1

rmusic
((0 48 500 1 100) (500 72 250 2 100) (750 71 250 2 100)
(1000 52 500 1 100) (1000 72 500 2 100) (1500 76 500 2 100))
EMI-Bach-invention-mea-1

FIVE

The ATN Component

The EMI and SARA augmented transition network (ATN) compo-
nents attempt to ensure that the analyzed measures (stored in the
object system files) and signatures (gleaned from pattern matching
and protected in many of those objects) will be recombined in logi-
cal, musical ways. Augmented transition networks have been used
successfully in automatic language analysis and generation (Bates
1978; Christaller 1979). They produce output that has predictable
meanings but with numerous, different, and logical orders of words.
They have proven valuable for human-machine interaction, where a
natural flow of language is desired without redundancy.

We have seen in chapter 1 how finite-state transition networks
(FSTNs) and recursive transition networks (RTNs) can effectively
represent language. For example, the sentence “Jim sees the ball”
could be analyzed by a simple set of four nodes and three arcs.
Unfortunately, the result, an FSTN, would not be able to distinguish
“Jim sees the red ball.” An RTN, however, with simple recursive
nodes to present subphrases of various lengths, could recognize
both these sentences as well as hundreds of other variations. We
also saw how ATNs were required to recognize transformational
responses such as, in this instance, “The red ball was seen by Jim,”
and so on. Obviously, ATNs, with their various registers for storing
conditional properties, are more sophisticated and flexible than
either FSTNs or RTNs.

As a further example, observe the following sentences, the first
as input and the other two as output from an ATN: “John was
believed to have been shot” (see Woods 1970, pp. 603-4); “Someone
believed that someone had shot John” and “Someone believed that

151

162

EXPERIMENTS IN MUSICAL INTELLIGENCE

John had been shot.” The transposition of these sentences resembles
Chomsky's transformational grammar (Chomsky 1965). All three of
these sentences are simple and have the same fundamental mean-
ing. Yet the surface detail—the order of words—is different and inter-
esting. People converse with such techniques all the time using
countless varieties of word orders and choices. Machines do not nat-
urally reorder words correctly in this way. Instead, they typically pro-
vide precise information in predictable orders. Augmented transition
networks can analyze and create varied and logical output, making
for more inventive interaction. When ATNs are applied to musical sit-
uations, especially situations involving recombinancy, they can pro-
duce diverse, logical musical compositions as well.

Figure 5.1 provides a more detailed example of how an ATN works.
The basic sentence map in figure 5.1a is a complete sentence con-
sisting of a noun phrase (subject—nps), verb phrase (vpl or vp2),
another noun phrase (object—npo), prepositional phrase (pp), and
proper noun (pn). The two verb phrases represent optional versions
of the transition. The word jump refers to a skipping of the step
shown. The two interchangeable noun phrases are described in more
detail in figures 5.1b and c. The representation wh in figure 5.1b
stands for words such as who, what, when, or where used for queries.
Other representations are as follows: det = determinator or article; pn
= proper noun; mp = modifier phrase; n0, n! (and so on) = noun; and
p = preposition. By applying certain viability tests (here between
nodes 0 and 2 of the top diagram in figure 5.1a and shown in the code
to be described) and inserting the various language parts that pass
these tests, a variety of interesting statements and queries may be
created from input of few actual words.

For example, recognition of the sentences “The man ate” and
“The man ate the sandwich” proves that this network (figure 5.1) is
capable of both FSTN and RTN parsing. The first sentence moves
0-1 by nps, 1-2 by vpl, and 2-3 by jump, and the second sentence
moves (-1 by nps, 1-2 by vpl, and 2-3 by npo. The network further
proves its robustness as an ATN by recognizing “The sandwich was
eaten by the man” as 0-2 by test, 2-3 by npo, 3-1 by test, 1-2 by
vp-2, 2-0 by test, 0-1 by pp, 1-2 by jump, and 2-3 by jump. This sen-
tence demonstrates transformational grammar in which the object
precedes the subject. The various tests performed by the arcs in the
diagram of figure 5.1 inform the nodal registers of the type
(active/passive, tense, etc.) of choice that needs to be made in the
subsequent state(s) of the network. For example, the passive voice
created by “was eaten” must be evaluated by 3-1 by test and 1-2 by

Figure 5.1

THE ATN COMPONENT

A contfext-free ATN.

a.Sentence nps vpl npo

153

d. Prepositi
phrase

onal
e n2
° ’ ‘ mp

154

EXPERIMENTS IN MUSICAL INTELLIGENCE

vp2 for 2-0 by test to observe the correctness of 0-1 by pp. Note
that ATNs necessarily subsume FSTN and RTN capabilities and can
successfully recognize sentences of these types as well as transfor-
mational examples. Also, ATNs are capable of generating correct
sentences according to the same principles, given they have access
to appropriately stored dictionaries of words.

m ATN BASICS IN LISP

Augmented transition networks can be written effectively in LISP
(see Gazdar and Mellish 1989; Watson 1991), partly because LISP
involves symbolic computation, which lends itself well to assign-
ments of words, abstractions, and arcs. The code presented here will
produce questions and statements to show how ATNs can create
logic in complex sentence generation. Two different styles of English
language usage—William Shakespeare and Mark Twain—will be used
as examples. These texts are provided in figure 5.2, which also shows
my assignment of word types using the function setf to set them
into appropriate dictionaries. Sentence parsing algorithms that auto-
matically place words into dictionaries are relatively common in NLP
and should not concern us here because they are both large and
irrelevant to the point of demonstrating how ATNs can be applied
musically. Figure 5.2c shows some of the variables required of the
program defined by the LISP macro defvar. As mentioned earlier, it
is proper protocol to set these variables before they are used.

The code shown in Figures 5.3-5.5 is self-contained and will repro-
duce output like that shown in figure 5.6 (see the file Shakespeare-
Twain on the accompanying CD-ROM). Although this code does not
generate transformational examples per se—both because such
would require far more elaborate functions and because the chosen
texts do not allow it—these functions contain tests, registers, and
other ATN attributes that prove valuable by example.

Figure 5.3 shows the function create-phrase, the toplevel
function of the ATN program to be described here. The lexicon is
reset in line 2 according to the lexicon argument used. This means
that all the global variables representing word types will be rede-
fined according to the appropriate lexicon grammar given in figure
5.2. The question-or-not variable is randomly set in line 3 so
that it can affect and be consistent with the various sentence part
choices. The variable phrase is then created from a combination of
a noun-phrase-subject, the results of a test (lines 6-17) that

THE ATN COMPONENT

165

&% CD-ROM

The file Shakespeare/Twain corntains all the functions and
data presented in figures 5.2 to 5.5 and produces output like
-that in figure 5.6. The file Shakespeare/Twain/music contains
an expanded version of this code, which includes the genera-
tion of music using the ATN engine (like that described here
and in Cope 1992). The Hypercard stack titled “bach
chorales” generates new instances of chorales based to some

egree on the techniques described in figures 5.11 and 5.12
and the accompanying text. The Hypercard stack “chopin
mazurkas” operates in much the same manner. The functions
shown in figures 5.22 and 5.23 can be usefully run separately
in SARA and demoristrate simple Schenker plotting. 4

Figure 5.2 Shakespeare and Twain dictionaries:

Q) Othello, act 1,scene 3, from The
Complete Oxford Shakespeare (London:
Oxford University Press, 1987),p. 1174.

Q.

Rodrigo: “thou be fast to my hopes.” Iago: “Thou art sure of me. I have told thee often, and 1
re-tell thee again and again. Thou canst cuckold him thou dost thyself a pleasure.”

(setf (get

' (mapcar
' (setg
' (setqg
' (setqg
' (setqg

' (setqg
' (setqg
' (setqg
'(setqg
' (setqg
' (setqg
' (setqg
' (setqg

#'eval

'*shakespeare-lexicon 'grammar)
(list

preposition '(to of))

who-what-where '(dost canst wilt art))
verb ' (told re-tells))

verb-phrase-1 ' (canst-cuckhold art-sure
be-fast has-told))

verb-phrase-2 '(re-tell have-told))

proper-noun '{rodrigo iago))
pronoun ' (i))
determinator '(my a))

noun-subject ' (hope pleasure))
noun-object '(thee him thyself))

modifier

' (again often))

conjunction '(and)))))

156 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 5.2 Shakespeare and Twain dictionaries:
b) From The Adventures of Tom Sawyer
(New York: Harper and Row, 1978), p. 180.
©) Useful variables.

b

“No it ain’t, Huck no it ain’t. It would ha’nt the place where he died. Lookyhere, Huck, I reckon
we'll climb down there and have a hunt for that box. There — on the big rock over yonder.”

(setf (get

'twain-lexicon 'grammar)

' (mapcar #'eval (list

' (setq preposition
' (setg who-what-where
'(setg verb ' (reckon c¢climb hunt ain-t have))
' (setqg verb-phrase-1
' (setq verb-phrase-2

'(setq proper-noun '(i we-11))
'{setg pronoun ' (huck it))

' (setg determinator

' (setqg modifier ' (over-yonder))
' (setq conjunction '(and)))))

(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar

(defvar
(defvar
(defvar
(defvar
(defvar

preposition ())
who-what~where ())
verb ())
verb-phrase-1 ())
verb~-phrase-2 ())
proper-noun ())
pronoun ())
determinator ())
noun-subject ())
noun-object ())
modifier ())
conjunction ())

preposition ())
who-what-where ())
verb ())
verb-phrase-1 ())
verb-phrase-2 ())

'(for on over))
' (would lookyhere))

'(climb-down))
'(has climbed))

'(the that a no))
(setqg noun-subject ' (box rock))

' (setg noun-object '(the-place there))

Figure 5.2 Shakespeare and Twain dictionaries:

(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar

(defvar
(defvar
(defvar
(defvar

c) Useful variables (continued)

proper-noun '(i we-11})
pronoun ())

THE ATN COMPONENT

157

determinator ())
noun-subject ())
noun-object ())

0)

conjunction ())

the-chosen-subject 'proper-noun)
the-actual-subject ())
question-or-not ())

0)

associates proper nouns and questions with certain verb phrases
and from certain choices on the basis of whether the sentence is a
question (lines 19-30). These latter choices include a further test
(lines 20-24) which provides another proper noun than the one
already chosen for the subject and branches depending on whether
the previously chosen word type creates a question. This combina-
tion of decisions based on question/statements and tests acts like
registers to delimit output to a particular word type. They could just
as easily be set to choose between genders, tenses of verbs, passiv-
ity of transformational sentences, and so on if the texts chosen for
regeneration had required such consideration.

The function noun-phrase-subject, shown in figure 5.4a and
called in line 5 of figure 5.3, begins (lines 2 and 3) by choosing from
proper nouns, pronouns and questions (who, what, when, and
where). Each of the three conditional questions (lines 5-9, 10-13,
and 14-25) sets various program variables and the chosen subject
to the actual choice of subject. Each of these is a fleshing out of the
nps shown originally in figure 5.1b. Figure 5.4b shows the function
noun-phrase-object, one of the functions called in lines 26-30 of
figure 5.3. Lines 5 through 7 of noun-phrase-object randomly
produce either an object with a modifier phrase (line 5) or simply an
object (lines 6-7). In either case, noun-phrase-object avoids
choosing the subject chosen already through the use of the LISP
primitive remove (lines 4 and 7).

The function prepositional-phrase, shown in figure 5.5a and
called in lines 26-30 of figure 5.3, returns a brief prepositional
phrase. As in figure 5.4b, the actual subject is removed from the list

158 EXPERIMENTS IN MUSICAL INTELLIGENCE THE ATN COMPONENT 169

Figure 5.3 The function create-phrase. Figure 5.4 The functions noun-phrase-subject and

noun-phrase-object.

1. (defun create-phrase (lexicon &optional (output nil))
2 (reset lexicon) Q.
3 (setq question-or-not (choice)) 1. (defun noun-phrase-subject nil
4. (let ((phrase 2. ({setqg choice
5 (nconc (noun-phrase-subject) 3. (choose ' (proper-noun pronoun who-what-where)))
6 (let ((test 4. (cond
7 (list 5. ((equal choice ‘'proper-noun)
8. (choose 6. (progn
9. (eval 7. (setq the-chosen-subject 'proper-noun)
10. (choose 8. (list
11. (if (equal the-chosen-subject 9. (setqg the-actual-subject (choose proper-noun)))))
12. 'proper-noun) 10. ((equal choice 'pronoun)
13. ' (verb verb-phrase-1) 11. (progn
14, (if question-or-not 12. (setq the-chosen-subject 'pronoun)
15. ' (verb-phrase-2) 13. (list (setg the-actual-subject (choose pronoun)))))
le. ' (verb-phrase-1 14. ((equal choice 'who-what-where)
17. verb-phrase-2))))))))) 15. (progn
18. (if (first test) test)) l6. (setqg question-or-not t)
19. (if question-or-not 17. {setq the-chosen-subject 'who-what-where)
20. (let ((test 18. (if (choice)
21. (list 19. (list (choose who-what-where)
22. (choose 20. (choose determinator)
23. (remove the-actual-subject 21. (setg the-actual-subject
24. proper-noun))))) 22. (choose noun-subject)))
25. (if (first test) test)) 23. (list (choose who-what-where)
26. (funcall 24 (setg the-actual-subject
27. (choose 25 (choose proper-noun))))))
28. ' (prepositional-phrase 26. (t
29. noun-phrase-object 27. (list (choose determinator) (choose noun-object)))))
30. Jump)))))))
31. (1f output (apply 'append phrase) phrase))) b.
1. (defun noun-phrase-object nil
2. (1f (choice)

of possible noun-objects so that duplication will not occur (lines 3. {cons

4-5). The function modifier-phrase, shown in figure 5.5b and called 4. (choose (remove the-actual-subject noun-object))

in line 5 of figure 5.4b, returns either a modifier or a modifier fol- 5. (modifier-phrase))

lowed by a conjunction and another modifier. Because modifier— 6. (list

phrase is called only once, only one conjunction will result (use of 7. (choose (remove the-actual-subject noun-object)))))

choice in line 3). The function jump in figure 5.5¢ and called in lines
26 to 30 of figure 5.3 is an abstraction for nil. The function reset in
figure 5.5d, found in figure 5.3, line 2, evaluates the grammar of its

160

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 5.5 The functions 0) prepositional-phrase;
b) modifier-phrase; €) jump; d) reset;
and e) various utilities.

=0

N =0

Y

2.

Ul W A

G wN =D

© N UsWN R Q

. (defun prepositional-phrase nil

(append

(list

(func

(appe

(eval
(setg

(nth

. (defun

(nth

(choose preposition)
(choose (remove the-actual-subject
noun-object)))
all (choose ' (modifier-phrase jump)))))

. (defun modifier-phrase nil

nd (list (choose modifier))
(if (choice)
(list (choose conjunction)
(choose modifier)))))

.{(defun jump nil nil)

. (defun reset (lexicon)

(get lexicon 'grammar))
the-chosen-subject
'proper-noun
question-or-not

nil

the-actual-subject
nil))

. (defun choice nil

(random 2 (make-random-state t)) ' (t nil)))

choose (list)
(random (length list) (make-random-state t))

list))

THE ATN COMPONENT 161

argument and sets the appropriate global variables to nil. The
functions choice and choose in figure 5.5e are utility functions
that provide random selection of true or nil (in the case of
choice) and a random choice from a list (in the case of choose).
Figure 5.6 shows some sample output of this ATN program. Note
that this generator often creates awkward results. Many more tests
and conditions (which space limitations prohibit including here)
must be coded to refine sentence production. However, and this is
very important, music does not require as many ATN refinements as
does language. As mentioned earlier, tense, singular/plural agree-
ments, and so on are not essential to musical examples. Therefore,
even a simple and rather crude generator such as this can be quite
useful in creating logical examples of music. Note that the ATN code
presented here can and has (see Cope 1992) created musical as well
as language examples. However, such musical generation is under-
standably limited in scope (e.g., melody only); thus, because I wish to
move on to more sophisticated composition, the examples and code
that follow will not be directly built on the examples of this section.

Figure 5.6 Output of the language program.

wilt my hope re-tell rodrigo

i canst-cuckhold him again and again
canst ilago have-told rodrigo

rodrigo told to thee again and again
i have-told him

iago art-sure of thee

iago has-told of thee

huck climb-down the-place over-yonder and over-yonder
huck climb-down there

it c¢limbed there

i hunt for the-place over-yonder and over-yonder

i ain-t for the-place over-yonder and over-yonder
we-11 climb-down for there

lookyhere we-11 has i

162

EXPERIMENTS IN MUSICAL INTELLIGENCE

m ATN BASICS IN MUSIC

Figure 5.7

To understand why ATNs are important for recombinant composing
programs like EMI and SARA, it is useful to show how FSTNs and
RTNs (see chapter 1 for definitions) can be used to generate music.
Both FSTNs and RTNs provide some but not all of the requirements
for effective recombinancy.

A Musikalisches Wiirfelspiel (see chapter 1) is a good example of an
FSTN in that it is fixed in regard to a network of functions established by
the composer but free in regard to which of an assigned group of mea-
sures such functions represent. Algorithmic programs that follow the
Musikalisches Wiirfelspiel concept also follow FSTN principles. For exam-
ple, analysis of a phrase of music according to the musical function
equivalents of noun and verbs (e.g., tonics and dominants or SPEAC)
can lead to the generation of new examples of music based on these
progressions (nets). Thus, an analyzed I-IV-V-I (C1-P1-aA1—C 1) progres-
sion as a musical FSTN can provide a basis for musical exchanges pro-
ducing equivalent progressions with different music for each function.

There are obviously severe limitations to the number and kind of
choices FSTNs provide for both language and music. For example, a
language FSTN has an established plan of word choices that cannot
be varied without jeopardizing the correctness of output. The same
is true of a Musikalisches Wiirfelspiel or musical FSTN. There are pre-
cisely n (usually 11, the possible outcome of the toss of two dice)
ways to begin a Musikalisches Wiirfelspiel. A musical FSTN will be
similarly limited by the number of analyzed phrases it uses as a net.
Thus, one can tire of both a Musikalisches Wiirfelspiel and a musical
FSTN quickly because what initially seems inventive soon becomes
recognizable if not predictable.

There are many ways for music to be recombined using FSTN
techniques. Of these, linear and nonlinear processes offer challeng-
ing potentials and another view of linguistic parallels in the creation
of recombinant music. Figures 5.7 to 5.9 present the primary essen-
tials of these combinatorial concepts. Figure 5.7 presents three
Mozart phrases to be used as examples of these recombinant
processes. These phrases are shown in their clarified form (see

Mozart sonatas clarified: a) K. 279,

first movement, mm. 1-4.b) K. 309,

third movement, mm. 1-8.¢) K. 284,
third movement, mm. 1-4.

THE ATN COMPONENT

163

a.
Py
ﬁ ! n’4 1 _'*____‘gE; S R——
> - e e] = ———
7 . I L ﬁ e
5 £ e m— —— oo e
; i.n —_—
o . |
AI | N S llr.I;. l |=
T —= e e
> o ® | : : = :
3 i P - —o—— 1 ——
e =E==E —
b.
£ T 2 o0 o » 2
. . F 'T e e !] e —
se—] 1
%gﬁi%ﬁ
")L 1 lj 54;f r; 1 l 1§ 1
é/ﬁ e ———— | — ——— I I
 — - i
S e e e e T =
e e [— .
C.
4 S
RS S Sse === ===

EXPERIMENTS IN MUSICAL INTELLIGENCE

chapter 2). References to these sources will take the form of example
subletter, measure number, and beat number. Thus, a.1.] refers to fig-
ure 5.7a, first measure, first beat, and so on.

In linear processes, functions may exchange only with similar
functions in the same phrase. Such linear processes assume that
music in a single phrase is more likely to work with other music in
that same phrase. This in-line exchanging requires that a phrase
have a large number of the same types of functions present, or the
results will sound very much like the phrase being used. This is due
to the possibility that a given function will not appear elsewhere in
the phrase and thus no function exchanges can take place. Figure
5.8 shows an example of linear recombinant music. Here, beat 1 is
a.2.3, beat 2 is a.1.2, and so on. All the exchanges are the result of
functional replacement in figure 5.7a only. Note that the program
does not cancel a beat once a switch takes place. Thus, a.2.3 occurs
twice in the second half of measure 1.

In nonlinear processes, functions may exchange with any other
similar function in any phrase in a complete database. In its simplest
form, this process exchanges equivalent functions without regard for
their similarities. The process here is thus more volatile than in linear
exchanges, as the music exchanged can be of very different character.
This nonlinear volatility may be controlled by choosing similarly
styled music for databases. Figure 5.9 shows an example of nonlinear
recombinant music. Note that there is no reason to exclude the origi-
nating phrase from the exchange process. Thus, nonlinear exchanges
include linear exchanges. The template used for this example is that
of figure 5.7b. Beat 1 is a.1.1, beat 2 is b.1.2, and so on.

However, both linear and nonlinear FSTNs still rely exclusively on
a given set progression (net) as their harmonic cantus firmus. Thus,
although providing interesting musical variations on these given
progressions, musical FSTNs are quite limited in their ability to pro-
duce inventive new examples of music in a given style. Creativity
with nonlinear FSTNs can be further curtailed as the music in a
database must conform to fairly rigorous similarity constraints for
the resultant recombinant music not to sound arbitrary.

Recursive transition network progressions elaborate FSTN net-
works of functions and can generate much more interesting musical
output. For example, the progression I-vi-IV-V-] (C1-C2-P1-A1—C 1)
could be created by the logical assimilation of the I~vi-IV-I
(c1-c2-pP1-C1) and IHIV-V-I (C1-P1-A1-C1) progressions as I-vi-IV
(C1-c2-pP1) and IV-V-I (P1-A1-C1) can intersect through the IV (p1)
chord and are permitted elaborations of these two progressions,
respectively. Thus, completely novel chord progressions can be cre-

THE ATN COMPONENT 165

Figure 5.8 An example of “linear” recombinant

music.
- - -]
: i N N, S —— . 4:
= |] E T ! E= '
et el el |
== — Se=se=e———_—— _—
o > —o
Figure 5.9 An example of “nonlinear” recombinant
music.
fa) | - * 0,0 o
‘ e
- e -
1 S ==

ated by using common chords and otherwise following the succes-
sion rules of given phrases. '

Unfortunately, the creativity allowed by RTNs exacerbates volatfl-
ity as music of significantly varying ranges, t}fpes, and so on is
forced together. One good method of solving this problem mvolyes
“rule inheritance,” which incorporates connectivity between musilcal
segments as well as their function choice. Rule inheritance rgqulres
the notion of “seeking,” which means that the termination.pomt of a
given segment of music “seeks” certain destination points in the seg-
ment that immediately follows it. If another segment of music can be
found that contains those same destination points but subsequently
moves in different directions, a new coupling of segments can be cre-
ated that follows all local rules of connectivity but that creates new
music without the limitations of fixed FSTN networks. Programs that
generate such combinations may know nothing about the loca.l (beat-
to-beat) rules of the music from which they compose but ultimately
follow those rules precisely.

To understand how valuable the notion of seeking can be, let us
examine the nature of one standard type of local rules. Bach’s rules

166

EXPERIMENTS IN MUSICAL INTELLIGENCE

of part writing are similar to those of most composers of the
Baroque era and, to some extent, to many of the composers who fol-
lowed, especially those composing choral music. Thus, these rules
provide an excellent example for demonstrating seek principles.
Typically, Bach’s voice-leading rules include the avoidance of)]
parallel fifths and octaves and (2) hidden fifths and octaves in outer
sets of voices. Pitches that occur in successive chords (common
tones) are generally maintained whenever possible. At least one
voice moves in contrary or oblique motion. Spacing is kept to a
maximum of an octave or less between each contiguous set of upper
three voices, whereas the bass is allowed to move freely. Doubling
rules follow these general dictums: (1) double the root if possible,
except in diminished chords, where doubling the third is preferable;
(2) double one of the primary notes of the key (tonic, subdominant,
or dominant) if not the root; or (3) double the fifth of the chord if
no other appropriate solution presents itself. Nonharmonic tones
(passing tones, neighboring tones, suspensions, appogiaturas, cam-
biatas, echappées, etc.) each have particular contextual constraints.
Suffice it to say, the practice of writing such chorales (a standard for
music theory courses at the college level) is complicated and often
requires years of study to achieve proficiency.

Coding these rules can be an extremely involved task. Programs
producing only adequate output can run thousands of lines in length.
Also, many of the rules compete with one another, significantly
increasing the amount of required code. However, the previously
mentioned notion of RTN seeking can produce quite striking and
rule-correct results, with program length being similar to that shown
in the simple language program of figures 5.2 through 5.5.

Figure 5.10 gives the first two measures of Bach Chorale 40.
Because this music is entirely of Bach’s origin, it naturally follows
Bach’s rules. Although this statement is rhetorical, it provides a use-
ful reminder of where the rules actually reside (i.e., not in text-
books). Figure 5.11 begins with the first beat of Bach’s Chorale 40.
To focus on rule inheritance and seeking, let us assume that this
first beat has been stored as an object in a database. Let us also
assume that the destinations that this beat’s voices seek are simi-
larly stored. For example, the soprano has a stored (in the object’s
destination slot) C with a seek destination of B, the alto has a stored
G with a seek destination of G, and so on, with the full set of destina-
tions being G-D-G-B from the bass upward.

Now let us assume that a large database exists in which many Bach
chorales are stored as beats or groups of beats in objects with their
respective RTN seek destinations and that all these chorales have

THE ATN COMPONENT

Figure 5.10 J.S.Bach,Chorale no.40,mm. 1-2.

Figure 5.11

L~ Pr— I
1 1 1 7 1
A WA i1 1
) 1 o] 1 1 1 1
%) a |]
1 1 :
g — t] o —— !
1 |
1 ! i I 1T T

An example of rules inheritance in the

creation of a new Bach choraie.Beat 1 is
from Bach Chorale no. 40, beats 2-4 from
Chorale no. 187, beat 5 from Chorale no.
239, and beats 6-7 from Chorale no. 298.

0 ' e
13 1 1
: | | T L 4 I
1 1l [) I
1 1 i 1 | | I
)] '] ' "
0 | } i T T I
LY 4
1 1 1 1 1 1 1
v I] 1 1 1 i1 | | 1
| - | b Yo 1 1
] hdd o (4
-]
= [i 1
L | H) =y
\ WA i i 1 1= Ld 4
1 k4 I : 11 L } -
? i 1 I i
l 1
O 1 1 1 +
25) | 1
| —) | 1
j —— 1 1 11 1 1 i ;I
T | || 1

167

168

EXPERIMENTS IN MUSICAL INTELLIGENCE

been transposed to C major so that the numbers of similarly voiced
chords have multiplied significantly (i.e., G-B-D in G major would
transpose to C-E-G in C major, adding one more chord of that type for
composition). With such a database of musical objects, it is not hard to
imagine that there could be another chord in the database that begins
with the notes G-D-G-B in the same octaves as the second chord of fig-
ure 5.10. This new chord could then replace the actual second chord of
figure 5.10. It might then move to a different subsequent chord or at
least offer different off-the-beat motions and different RTN seek notes
than those of the current second beat of figure 5.10. This new combina-
tion would thus inherit all of Bach’s local part-writing rules.

Figure 5.11 shows just such a case. The initial notes of the second
chord of this example are the same as in the original music (see fig-
ure 5.10). However, the bass moves by eighth notes downward, and
the following chord is then quite different from the original (again
see figure 5.10). The ensuing beats vary significantly from the initiat-
ing chord’s original following chords. Again, however, this new
music follows all of Bach’s local voice-leading rules.

Figure 5.11 extends this new composition by continuing the same
process. The last beat of measure 1 in figure 5.11, now from a differ-
ent chorale than that shown in figure 5.10, seeks E-B-E-G (from the
bass upward) in their appropriate octaves. Such a chord was found
by the program in another of Bach’s chorales in the database, and
the program replaced the original with the newly found music and
its succeeding chord. Figure 5.11 shows how the process plays out
into a full new phrase of music replete with all the rules of counter-
point inherent in Bach’s extensive collection of four-part chorales.
Thus, object orientation and RTN processing can play an important
role in rule inheritance by keeping the amount of code required to
produce new compositions to a minimum.

Figure 5.12 presents another example of rules inheritance to
demonstrate the variety of functions, rhythms, and dissonances pos-
sible. Checking the appropriate chorales given in the figure legend
will show how the various RTN seek destinations have remained
absolutely faithful to the original music in terms of voice leading, dou-
bling, and other inherited rules. The variations in the lengths of
extracted music are somewhat arbitrary here, and longer segments
are used so that the demonstration of the process can be made
clearer. In more elaborate examples, signatures—discovered by pat-
tern matching according to the principles found in chapter 3—could
also be included in this process.

One might argue that the overall succession of chords in such
music is not Bach’s and that he may never have used either of the
new progressions created in these examples. In fact, the new com-

THE ATN COMPONENT 169

Figure 5.12 Another example of rules inheritance in
the creation of a new Bach chorale. Beat
1 is from Bach Chorale no. 127, beats 2-4
from Chorale no. 223, beat 5 from Chorale
no. 187, beat 6 from Chorale no.211, beat
7 from Chorale no. 223, and beats 8-12
from Chorale no. 239,
0 ; ; : ; | ! .
D) | T | l T
ﬁ f I i 1 I 1 T 1
l' D A\ WJ 1 I'v i‘} h i 1 : “ I m :: E :: }\j‘l ==
N’
0 — S - , : ;
' ¢ & I?)Ir P—p—[——d—d:d—d—] 1 | —— l
5}’ i] i 1 ' —— =
i - te —— o & ;&

positions, although following the voice-leading requirements of
note-to-note motion, ignore the overall semblance of progression
unity. For example, it is quite possible that these quasi-Markov
RTNs would scatter cadences randomly through the music such
that phrases would be quite unbalanced in length and thus illogical.
In other words, although the local note-to-note rules might be rec-
ognized, the higher level logic is not. Thus, this process, although
excellent for rule inheritance, is poor at creating logical musical
structures on larger scales.

One way to avoid this shortcoming is to combine the RTN seek
process with an FSTN transition net. Such a net could follow, for
example, given Bach progressions for phrases, ensuring cadences in
appropriate locations, and Bach’s own large-scale logic. This would
require, at least, a separate component to store the functions and
start notes of all the beats of one phrase of a chorale to use as a
model. However, finding chords with the same function, start notes,
and RTN seek destination notes would require incredibly large data-
bases, as many of the chords substituted for the originals will
otherwise (because of the restraints caused by the progression

170

EXPERIMENTS IN MUSICAL INTELLIGENCE

model) be near or often identical to the original music and include
occasional passing tones or other off-the-beat differences.

There is a more useful way for RTNs to approach the probiem of
larger scale composition. Figure 5.13 presents a simple diagram of
two-voice music demonstrating how rule inheritance can be used
freely from an initial chord with the proviso that each successive
choice of new chord be made from a list that includes, if possible,
the next function of the original network in its most appropriate
location. This means that if more than one iteration of the function
occurs in a phrase, it will choose the most propitious one; other-
wise, the net will be rejoined exactly where it first branched. The
original net then creates a kind of background or superstructure for
the explorations brought about as the result of rule inheritance.
When the necessary vicissitudes of phrase length demand that a
cadence occur, the RTN can be led back into the original network.
This process imitates that of the language RTN, shown in figure 1.21,
where subphrases expand on the initial net. The approach affords

Figure 5.13 Using a TN during rule inheritance.

==
S=S== .

Y

- Mt 1

Y

THE ATN COMPONENT 171

both a highly creative process and one that subscribes generally to
the upper-level requirements of form. Unfortunately, the best that
such RTNs can obtain from this “general subscribing” is rough
approximations of phrase length and cadence location.

As we have seen, FSTNs in music produce predictable progres-
sions of SPEAC functions on the basis of phrases in a database, and
RTNs in music create more imaginative progressions but suffer
from unpredictable phrase lengths. ATNs in music, however, just as
their counterparts in language, produce creative composition with
appropriately located cadences and proper phrase lengths. This
transformational composition results from code that keeps track of
previous choices while making new choices on the basis of the abil-
ity of those choices to properly fulfill larger structural requirements.

Figures 5.14a-e provide a simple musical example of how the
ATN process can be useful in repositioning music instead of words
when compared to FSTN and RTN processes. Figure 5.14a gives a
short excerpt of music from Mozart. Figures 5.14b—d show reposi-
tionings of half-measure fragments of figure 5.14a. In the first ran-
dom positioning of this example in figure 5.14b, the musical mate-
rial seems forced together haphazardly, making little musical sense.
The placement of the second half of bar 3 of figure 5.14a as the first
half of the first bar of figure 5.14b alongside the first half of bar 1 of
figure 5.14a produces awkward, stylistically uncharacteristic music.
In the FSTN positioning of this example in figure 5.14¢, the musical
material seems somewhat more musical because the logic of the ini-
tial progression has been maintained. However, some connections
(e.g., measure 3) seem stylistically uncharacteristic. In figure 5.14d
the music is recombined following an RTN transition network. This
example uses seek processes to enhance the musical logic that
was lost somewhat in the FSTN recombination of figure 5.14c. How-
ever, the phrase length is uncharacteristic and the cadence seems
forced. In figure 5.14e, however, the use of ATN creates a logical
arrangement of segments such that the musical integrity of the origi-
nal is maintained even though the selected parts of the music have
changed places. Here, the nodes (half-measure points) remain in-
formed of the potential short- and long-range consequences of the
various choices; thus, phrase length, cadence, and other attributes
fulfill both musical and structural needs.

Figures 5.15a and 5.15b give a more complex example of musical
ATN. Figure 5.15a shows an eight-beat phrase of a Bach chorale with
a traditional functional analysis and SPEAC symbols. Figure 5.15b
links various chorale segments in a manner consistent with previ-
ous examples and provides both variety and rules inheritance while

173

THE ATN COMPONENT
Al
40:5 <N

Ci

()

211:3

Al

\

i 8
P2

le

Cl
40:4-5

-
140:1

r &1

rF]
y L]
\ W

)}
)

ATN: Q) First eight-beat phrase of Bach,
Chorale no. 140. b) an AIN recombination.

b.

Figure 5.15 A more complex example of musical

\%
Al

leg Viig le
c1 Al A2 Cl

C1

Ci

&

[}

ol

t’)_e_

1-4.b) A random recombination. c)
A recombination using FSTN. d) A
recombination using RTN. e) A
recombination using ATN.

>°
I
L J

Figure 5.14 o) Mozart, Piano Sonata (K. 545), mm.

EXPERIMENTS IN MUSICAL INTELLIGENCE

9 7
Y L B)

L
A Wi
r £
7
bl

172
D]

Y £
A W

s

174

EXPERIMENTS IN MUSICAL INTELLIGENCE

adhering to the basic logic of phrase length and half-cadence func-
tion of the original music. Note that chords 4-5-6 of the original (fig-
ure 5.15a) are quite different from the new creation (figure 5.15b),
although the cadential destination chord remains the same in voic-
ing and function. The origin of each collection of beats is presented
above the soprano voice of figure 5.15b as the number of the origi-
nating chorale and the measure numbers separated by a colon. Thus,
one can imagine many strategies for creating new Bach-like chorales
that follow both local and more global rules. Such combinations
were used by EMI in the composition of the EMI-Bach chorale pub-
lished in Computers in Musical Style (Cope 1991a, figure 5.40, pp.
194-96). However, unlike the rather simple examples presented here,
the actual sources for the various beats of that chorale are difficult
to trace, being based on over thirty similar works by Bach.

The difference between the progressions of figures 5.15a and
5.15b results from (1) allowable functional interchanges based on a
combination of chord protocols inherent in rules-inheritance seek
processes and (2) choices based on musical ATN register testing
that has consequences beyond contiguous beats. This latter trans-
formational concept is the same as that given with language shown
in figure 5.1a. In figure 5.15b, the cadence represents node 3 in figure
5.1a, whereas the earlier chord choices in figure 5.15b represent the
results of the “test” between nodes 3 and 1 in figure 5.1a. Interest-
ingly, the last two beats of this music demonstrate an even more
refined example of ATN. In figure 5.15b, the second chord of the sec-
ond full measure (the last chord of measure 4 of the original Bach
Chorale 40) connects with a noncontiguous but similarly functioning
chord in the same chorale (measure 5, beat 3). This is made pos-
sible by the synonymous function and similar seek notes.

Augmented transition networks also allow for the generation of
more convincing music in a style because position-sensitive signa-
tures can be reconnected in ways that allow them to remain func-
tionally (in musical terms) specific. Signatures, like cadences, re-
quire special alignment code to ensure that their connection to the
destination phrase is logical, musical, and stylistically consistent.
After all, if the initial and termination nodes of signatures are
abrupt, their poor connection with surrounding music will nullify
the very stylistic characteristics that their usage is designed to pro-
tect. Signature connections follow the same procedures necessary
for potentially disruptive cadence connection: transformational arcs
from the intersection nodes point back to the nodes of previous
measures to guide them toward proper connectivity. Because the
original order of the protocols is maintained, smooth connections for

THE ATN COMPONENT 175

signatures help to create results that sound more like the music used
for analysis while still being creative and unique. As mentioned pre-
viously, music (unlike language) need not have the tense, singular/
plural, and other rules that make language ATNs so complex.

Micro-ATN (MATN) is to voices what ATN is to measures or sub-
measures. Whereas ATN selectively recombines music in a phrase,
MATN selectively recombines voices within that music. As with ATN,
EMI and SARA accomplish MATN through a complex process of lexi-
con matching, transposition, and register mapping. Whenever MATN
recombines a measure, it first calls the SPEAC lexicon of the function
of the chord. This ensures that the implied harmony of the original
SPEAC lines will be maintained. To ensure the original connectivity of
destination notes, only those voices (transposed or not) with similar
initial and terminating pitches can be recombined. Thus, seek con-
nectivity will be maintained with the new voice.

Figures 5.16a—c provide a simple demonstration of this process.
The original music is shown in figure 5.16a. Note that the first notes of
each beat are the seek destinations of the last notes of each preced-
ing beat. Figure 5.16b shows another measure, found as a consulta-
tion with the S1 lexicon that both measures have in common. Figure
5.16c shows a newly constructed measure, a composite of figures
5.16a (top two voices) and 5.16b (bottom two voices). Note that the
voices do not collide and that the material present in the new voices
does not conflict with the remaining material of figure 5.16a. Also, the
initial notes in the new measure still conform to those of the original
measure of figure 5.16a (C-C-E—C from the bass upward).

Micro-ATN can produce slight variations of recombined music or
entirely unique results not found in any of the databases in use. At
its best, MATN invents exciting new combinations of voices that
retain the stylistic traits of the original music. At its worst, MATN
can produce problems that can destroy otherwise successful works.
It is typically used with small databases that would otherwise create
source-recognizable music and seems less necessary and interesting
when applied to recombinant processes with large databases.

Observing ATN and MATN from the perspectives of large-scale com-
position can be useful. To this end, the beginning of an EMI-Mozart
string quartet movement is shown in figure 5.17. Each measure of this
work was drawn from Mozart’s first (K. 80, 1770) and second (K. 155,
1772) string quartets, first and second movements. The first mea-
sure of the EMI-Mozart is a transposition (A major to G major)
of the first measure of the second movement of K. 155, the first
thirteen measures of which are shown in figure 5.18. The second
measure of the EMI-Mozart is a slight variation (note the violin 2

THE ATN COMPONENT 177
Figure 5.16 a) Bach,Chorale no. 140 (beats 1-3,m. 1).
b) Chorale no. 241 (beats 2-4, m. 10).
c) Result of micro-ATN (MATN).
and cello parts) of the second measure of the first movement of K.
a. 80, the first twenty measures of which are shown in figure 5.19. The
- variations are due to MATN, with each voice originating from some
]] other location within the Mozart quartets in a similarly functioning
measure. Note the ATN and seek connectivity in the upper voice in
figure 5.17 with the first violin moving to a repeated G across the
— ! first barline. String quartets and instrumental music in general re-
= ——— quire less seek connectivity than do vocal works like Bach chorales.
< Thus, the other parts move more freely here.

/ The EMI-Mozart third measure is a transposed version from K.
 E— I R 155 (see figure 5.18, measure 3), whereas the fourth measure is the
o 1 ‘ | fourth measure of K. 80 (see figure 5.19) with a trill added via MATN.

Such hocketing back and forth between sources is not unusual
_p— because, when transposed, such measures often connect logically
%j:'_———j: between similarly metered movements.
' Measures 5 and 6 of the EMI-Mozart continue the back-and-forth
A . motion, returning to measure 5 of K. 155 (second movement) in trans-
(. o— — position and measure 6 of K. 80 (first movement), respectively. Again,
Y I slight variations—here in the second violin part in the EMI-Mozart in
measure 5 and the first and second violin parts in the EMI-Mozart in
measure 6—result from octave displacements (see “Variations” in
e e e e chapter 6) or possibly MATN. However, measure 7 of the EMI-Mozart
e breaks the exchanges by continuing K. 80, measure 7. Measure 8 of
< the EMI-Mozart then reverts back to a transposition of K. 155, mea-
Ia) - sure 6, second movement.
= — ,tF This work uses a network chosen by the program from K. 80,
measures 1 to 8. In traditional harmonic and functional terms, the
progression is FV-VI-IV--IV—vii7/V-V). In SPEAC terms, this
\ — - translates to C1-A1-A1-C1-P1-C1-P1-S1-A1l. Although in some
] — ways resembling each of the source works, the new theme has its
c. own life and character because it follows strictly the basic mold of
/) the Mozart model and adheres to the stepwise character of the
(s F__;'— lines of the original. In addition, little if any of the original style is
DA ' ' lost in the reconstruction.
The next few measures of the EMI-Mozart are more creative and
() ; : possibly interesting in their probable evolution. Measure 9 of the
{ J,-’_‘_—.__ EMI-Mozart is a slight variation of measure 9 of K. 80. However, mea-
- sure 10 of the EMI-Mozart is a radical variation (and transposition)
< of measures 45 (beginning on beat 3) and 46 (continuing to beat 3)
of K. 155, shown in figure 5.20. The harmony of these two segments
$= i — is alike even though the voicing between the violins differs signifi-
¥ cantly. Although the viola lines begin in a similar manner, the new
e work deviates (in measure 10 of figure 5.17) in apparent imitation of
\ — . the previous measure’s first violin part. Because no code was used

178 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 5.17 The beginning of an EMI-Mozart string

quartet.
J=45 ir T
Violin T 0 W%ﬁ -
oliN ([ﬁ T T ! I'I]
D) l
04 !
R [S ———=—==——c=c ==

P - pr—
Viola SE ===
I 1 1 1 i

___;'?
%V

! I Y
5 ¢+ e 2 » » v }
i T T 1 ———
 — N—— Se—

e
N
==
&

,
e
)
E L]
LY
& 1
ol
e
T

Ty

1%
119

F"‘l

THE ATN COMPONENT 179

Figure 5.17 continued.

O % o o > o o
(153 ¥ 1 T 7 F! i f: ﬁ;’ C
04

'H -
&— S —
g fe e e

\% I) I n b
o o wo"tewgits oo 5 > T
 — —
\ 0 > > T T T T —1 1 1 T T 1 T i
——+— T = e S JSSS B — i ——"— p—
!)|
) & be »> £ PY
r: 4 Fl T T 1 1
’} r) uFl 1 — L |
('V: S = —
D)

I~
ol

n
]E} 0 > -y > | >
T—= o » ﬁ‘ 3 y) 9
I T T 114 >y T
2 14 T I ¥ <

T
v
N8
NN
TN
A4
M
| I

m Py
4 1N T | K 4 > "y >
=il Ty T T Y 7] T > Ha » > >
> N & > > 1 T e T 4 > 4
8 ~ — — — g —) &

e
e

N3

S
—ITe
1%
1T

180 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 5.18 The beginning of Mozart's String Quartet

THE ATN COMPONENT 181

Figure 5.18 continued.

e
| ME
1

S
- et S, Ay S

] i} 1 T 17
4

(K. 155).
Andante
h
— e P —
) |
& 4,;;*?‘—;} = — ; %
- -
o — — 2TV
2 ®
) |
s R e e e e
4 4 5
b= / » + »-
— tﬁx”] T f 7:;&@‘
.) ¥ Il L - ll T I T
44
= = — e e e e —
& R =~ = e 4 3 5
#
o E E:) - i 1 1 1 I T i' r {; {; 1"= i: =
#
ay i 1 1 I‘i 4B . - -y 4B Py I'
E=E=====c===
O 44 A e &
T I Ty i) ?’d‘P_‘H—t o
< —_—t—p ﬁ 2 '
»
N 4 #
i = } #i
- ——r—— d ng:nﬁ 57— =
) ?qj ;}-;L_—._]- _'.'t ;l.l V= =
— b
15 3 - i
hil- Al r) 7] - Il |) ; # ol }
] 4 Py i ; g i
p
1L
kil 1 i T VA : }: :F: I; ”I‘
! I i 1 ;!E «"r

T I To——

f

for such imitation, this seems to be the result of MATN. In other
words, it was good fortune that some line of similar function and
length from another part of one of these two quartets possessed the
same melodic characteristics as the material in the previous mea-
sure in the first violin part. Note that throughout this passage the
connectivity of the first violin and cello parts (particularly) exem-
plify stylistic stepwise motions due to extensive ATN activity.

However, measures 11 and 12 of the EMIF-Mozart do represent pro-
gram variations and are not of Mozartean origins. These two mea-
sures are a sequence at the interval of a perfect fourth from the pre-
vious two measures. Such sequencing is considered normal for tonal
music but would be lost in all but vague terms from the original
because of the deconstruction process. Therefore, they result here
from specific sequencing code in the EMI program. However, the
variation in the third beat of the viola part of measure 12 of the EMI-
Mozart is the result of MATN, the origins being otherwise unclear.

The remainder of the EMI-Mozart second phrase (measures 13-16) is
from measures 13 and 16 of K. 80 (see figure 5.19) and transpositions of
measures 26 and 27 from K. 155 (not shown). The remainder of the EMI
work is a similar compilation of materials, having interspersed tech-
niques derived from code. What is not shown here, because of space
limitations, is how the cadences and other key points are adjusted
according to formal considerations so that, for example, the principal
cadence points are each more final than internal cadence points and
the various key centers, dictated to some degree by the borrowed
Mozart network, conform to standard classical practices.

THE ATN COMPONENT 183

Figure 5.19 continued.

T1e
%/)

m ATN PROGRAM

182 EXPERIMENTS IN MUSICAL INTELLIGENCE
Figure 5.19 The beginning of Mozart's String Quartet
(K. 80).
Adagio b
el
Violin 2 .- ¥ ﬁ }: 7 f\F o tFIéF —
®» | S
Violin = = ﬁ -
(»)
Violo 1 1 1 i I‘; I 1 1 | ;——] ; Il ; } ’ ‘; x { E
® oo e L e———
Celio M SORR S S——— e A M F e
(p)] I]) = '
5 . 2 0P & ir
- . epplf #E## £ o >
- .
E%E%E;tt__Jaii ==L
E! ~ o .o+ o®a tr
e S
.J 1 Il - —
Ty -
! 11 ———] < < S 1
SetCELLe £
ST A
10 /2~
04 Fobisd S0 eoe o,
SF Y g L 11 1 | : ‘i ‘i
g £ E Lroyel
5 o

£}

| _hﬁ
I 4
M
A
TTe
TT®

™

s

- 2
= =15 o, —
= 1
—— —
T 1 I E .
K
—~
T b onn [L
- 1 T 1 1] 1 1 T]k\ -
2 1 < —
& <
~
~ -'-F
y: - T r
ay
i - R " 1 -y *—
LA § |] 1 1 1 1 1 T 17 AY
— ”
. - o,
3 1 I | I'F_'_F > > -y F
P4 - 1 i 1 1 . Y | el) =~ [7] Y ay
T = —_—)| 1 »~ = 1 1 1 17 1 PN 1
1 1 1 1 1 T | &
] Q‘ 1 1 1 1]

Much of the ATN portion of the EMI and SARA programs resides in
the analysis portion of the code. This is where SPEAC functions are
analyzed and various destinations stored for the recombination
process. Therefore, much of the measure-to-measure ATN code has
been previously discussed (see chapter 4). There are, however,
other levels of the ATN composition process that must be managed
logically rather than by random selection.

Figure 5.20

EXPERIMENTS IN MUSICAL INTELLIGENCE

Mozart, String Quartet (K. 155), mm. 45-46.
e h’
g EﬁF o £ o
= = = ¥
S :
N
po Lee o |2
vV L 1 1 1 ‘l
iy
- hr+'—

The function make-best-choice, shown in figure 5.21, provides
a simple but effective example of SARA connectivity necessary for
proper ATN recombination. The first argument to this function
stalft—note—required, provides the seek-note destination of the:
previously selected measure. The measure-names argument is a
list of appropriately functioned measure names from which to make
a best choice. These are typically found in the lexicon of the appro-
priate SPEAC function. The final argument to make-best-choice
§tart—notes, is a list of beginning notes of the measures presented,
in the second argument. The function my-position in line 3 of fig-
ure 5.21 provides the position number of st art-note-requiredin
the start-notes of measure-names. This function will return a
match if one exists but the use of find-closest in line § of figure
5.21 ensures that, if one does not exist, make-best-choice will still
return a probable best match. In EMI, the equivalent function to
make-best-choice tests all voices as well as texture, range, type
of n_lusic, accompaniment, and even the relationship of the current
choice to the impending cadence (see figure 4.5¢ and related text).
In SARA, because of size and speed constraints, the function make-
best-choice limits its parameters to one level: the destination of a
channel 1 voice.

Managing higher level form functions for recombinant processes
that do not otherwise account for such formal considerations falls

THE ATN COMPONENT 185

Figure 5.21 The function make-best-choice.

. (defun make-best-choice
(start-note-required measure-names start-notes)

(let ((test (my-position start-note-required start-notes)))

(if test (nth test measure-names)

(nth (position
(find-closest start-note-required start-notes)
start-notes)
measure-names))))

W~ 0w N
P

under the umbrella of ATN. The function schenker-plot serves to
create logical lists of SPEAC symbols that are ultimately translated
into logical progressions for EMI and SARA. These SPEAC symbols
serve as, for example, markers for cadential formation in large-scale
forms. This ensures that final cadences of works have the tonic in,
for example, the upper voice and that various internal cadences do
not have tonic in their upper voice or otherwise lack completion.
Figure 5.22 shows the function schenker-plot, which returns a list
of melodic (Urlinie) notes for each phrase of a composition in the
form of a list of descending numbers matching the number of
phrases (sublists) in its argument. The function layer-analysis,
called (in line 3) by schenker-plot, returns the actual list of
Urlinie notes. Neither of these functions works with forms of less
than six phrases, as such forms do not require this kind of care.

However, the function schenker-plot requires further transla-
tion into SPEAC symbols. This is accomplished by the function
translate-urlinie (shown in figure 5.23a) used in the top level of
the SARA program. This function takes the results of schenker-
plot and returns a list of symbols indicating both SPEAC and level
(f = foreground, m = middleground, or b = background) of the
descending line numbers. These symbols are then translated into
octave-independent scale degrees for the function find-best-
cadence, which acts similarly to the previously discussed function
make-best-choice but for cadences.

Figure 5.24 shows how the various layer analyses and projection
functions coalesce into a unified whole to make the recombinant
processes logical and coherent during composition. This layout
can be seen as a representation of a Schenker framework and a
transposed-to-C version of figure 5.17. The just-defined functions
coordinate the upper voice (Urlinie) logic in a skeletal background,

186

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 5.22 The function schenker-plot.
1. (defun schenker-plot (form)
2. (let ((number-of-phrases (length form)))
3. (layer-analysis
4. (create-raw-form (test-the-length number-of-phrases)
5. number-of-phrases)
6. form)))

Figure 5.23

The functions) translate-urlinie and
b) translate-ur.

THE ATN COMPONENT 187

Figure 5.24 How Urlinie and SPEAC function fogether

a.

(defvar *plots* '(cb pb cm pm ab sb eb cf))

during composition (in this case for figure
5.17) in transposition.

1. (defun translate-urlinie (plot)

2 (if (null plot) nil

3. (cons (translate-ur (first plot) *plots*)
4 (translate-urlinie (rest plot)))))

w NPT

. (defun translate-ur (plot-number plots &optional (test one))
(if (equal plot-number test) (first plots)
(translate-ur plot-number (rest plots) (add-one test))))

whereas the measure-to-measure SPEAC motions allow the harmonic
direction to converge into logical cadences. The results help maintain
coherence significantly beyond that of using prescribed forms. The
subtleties of tonal (and to some degree non-tonal) music can be re-
tained in music that otherwise succumbs to the exigencies of moment-
to-moment composition. As a result, works really end and do not just
stop, as so often is the case in computer composition not governed
by some kind of background logic.

Modulation in EMI, and to some degree in SARA, results from a
subtle combination of inheritance and manipulation. Momentary
modulations (secondary functions of keys) can be captured in data-
bases and reconstructed because both traditional functional analy-
sis and SPEAC symbols allow for such nondiatonic representation.
However, music that modulates for significant periods of time is
transposed to C major, and modulating phrases are protected during

S ir 4 t’.' 3
I t ¥ 3
== ——ssmres
1 N———
F"—} T 1 fro— r_[" : " {-1’_{}_1
2 T
— oo —9o—9o -
Cl A2 Al Cl
2 P -~ 1
: . e === :
e
r 3
s o o o eseeP|E
e e e = L I = ===
T 1 I—
P2 Cl P

database construction. The program then ensures their connectivity
to appropriate new keys during recombinancy by not placing their
cadences in lexicons. Such protected cadences are then treated like
signatures during composition, and subsequent phrases are tr-ans-
posed to the appropriate new keys. Although low-level functions
often require random procedures, it is imperative that high-level
functions operate with this kind of musical integrity.

N SIX

An Application-Level
Program and Sample
Output

hid

The EMI and SARA application-level code coordinates the analysis
system, the pattern-matching program, the object-oriented databases,
and the musical ATN, creating a useful tool for composition. Although
this combination may seem awkward, it turns out to be rather
straightforward. Its success depends on connecting the various ele-
ments together in a logical order so that each can contribute its
strengths without complicating the resultant mix of techniques.

m PUTTING IT ALL TOGETHER

Each of the preceding chapters focuses on an important aspect of
EMI and SARA and gives various examples of code regarding the con-
cepts each chapter presents. The following discussion paraphrases
each of these programs so that they can be seen at work in tandem
and presents application-level code that calls the code previously
described. This discussion then examines works created by SARA,
the software that accompanies this book on CD-ROM.

Figure 6.1 shows a portion of the function insert-music, the
primary code responsible for creating databases in SARA. Although
the process of creating databases is not used directly by the com-
posing program, it represents the principal analytical process of
both EMI and SARA. The function insert-music takes numerous
arguments, the first of which relates the name of the proposed data-
base. The argument pulse represents the meter of the work being

189

190 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 6.1

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

The function insert-music.

(defun insert-music
(database pulse incipience matching-line-number mode tempo)

(set (concat database '-network)
(nthcdr (if incipience pulse 0)

(analyze *music-in-beats*)))

(buffer-insert *temporary-buffer*

(insert-music-into-database
(get-section database)
database
(concat database '-network)
pulse
incipience
matching-line-number
mode
tempo))

(enter-database *temporary-buffer*

(insert-into-file
(if incipience
(rest (eval database))
(eval database))
database
(eval (concat database '-network))
pulse
(get—-section database)))

(compile-file *path* :output-file)

stored in a database, and incipience indicates the presence of a
pickup measure (treated as a special case in SARA). The remaining
arguments should be self-explanatory. The full code of insert-
music (too large to reproduce here, hence the “.7 indi-
cating missing code) creates databases as shown in figure 4.11, the
database for a Chopin mazurka phrase. Lines 4 to 6 of insert-
music set the basic network to the analyzed music for transition
network recombinancy. Lines 7 to 25 effectively print the class and
instance—creating code (i.e., make-instance, etc., for objects) and
data (i.e., lists of events) for each database. Line 26 compiles files
for fast loading.

1. (let

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 191

The pattern matcher interface code.

({and (match? (eval measure-name))

(if (next-measure measure-name)
(match? (eval (next-measure measure-name)))))

(next-measure measure-name))

Figure 6.3 The AIN interface code.

((pre~-dominant-list (get-predominant destinations)))

(make-best-choice

(get-destination-note measure-name)

pre-dominant-list

(get-new-first-notes-list last-chord pre-dominant-1list)))
(make-best-choice
(get-destination-note measure-name)
(remove—-matched-objects

(remove-last—-chord last-chord destinations))

(get-new-first-notes-1list
last-chord
(remove-matched-objects

(remove-last-chord last-chord destinations))))))

Figure 6.2 shows how the pattern matcher (discussed in chapter
3) interfaces with the EMI and SARA composing programs. Pattern
matching occurs prior to actual composition and sets the match?
variable of loaded objects to t when signatures are detected and
appropriately set in place. Such signature protection ensures that
these objects will not be separated from their original succeeding
objects during recombination. In figure 6.2, if match? is t and the
following measure, if one exists, also has its match? slot set to t
(see lines 2-3), the measure is returned rather than seeking a logical
replacement.

Figure 6.3 shows a small example of how the composing program
handles ATN (discussed in chapter 5) during the recombination
process. The function make-best-choice provides the inter-
connections necessary during the various measure choices from
inception to cadence during the creation of a new phrase of music.
The newly chosen function then provides destination functions and
notes for continued composition. This code also shows (in line 1)

192

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 6.4 The top-level functions create-work and

create

a

1. (defun create-work nil

2. e e e

3. (setg *meter*

4. (meter (eval (concat (setg *phase-name*

5. (first *selected-databases*))
6. '-cadence))))

7. (setg *layer-tuner* (if (> (length *structure*) *limit¥*)
8. (translate-urlinie

9. (schenker-plot *structure*))))
10. (setq *initial-composition*

11. (transpose-b-section *structure* (create *structure*)))
12. (if (null *initial-composition*)

13. (message-dialog "Failed!")

14. (progn (setq *history* (reverse *history*))

15. (setqg *new-work*

16. (make-instance 'new-work

17. :mode (read-from-string *mode*)
18. :tempo *tempo*

19. :meter *meter*

20. :music

21 (embellish

22. (make-playable

23. *initial-composition*

24, *meter*)))))))))

b.

1. (defun create (form)

2. (let ((creator (concat *creator* '-(very-first form))))
3. (if (null form) nil

4, (cond

5. ((and (member (very-first form) *save-form*)

6. (< *recombinance* 10))

7. (cons (eval (very-first form))

8. (create (rest form))))

9. .

10. ((get-form-from-dbs (very-first form)

11. *selected-databases*)

12. (progn (push (very-first form) *save-form*)

13. (cons (set (very-first form)

14.
15.
16.
17.
18.
19.
20.

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 193

Figure 6.4 continued.

(compose creator
phrase-length
(get-meter-from-dbs
phase-name¥)
(first form)))
(create (rest form)))))
(t (create (rest form))))))))

the formation of the pre-dominant-1ist, which is part of the
ATN necessary for ensuring that cadences have proper logic and
connectivity.

m APPLICATION-LEVEL PROGRAM

The application-level function of the SARA composition program is
create-work, part of which is shown in figure 6.4a. This function
contains many of the various user warnings and sets a number of
variables that require resetting, including *meter* (lines 3-6) and
layer-tuner (lines 7-9), the latter of which is responsible, in
larger compositions, for controlling formal constraints. Because
much of the application level is devoted to matters of “shopkeep-
ing” rather than fundamental issues of composition, create-work
is hardly a revealing or an informative function. However, in line 11
it does run the function create (part of which is shown in figure
6.4b), which offers a far better vehicle for describing SARA composi-
tion processes. The function create takes a list of form representa-
tions as argument and returns a new composition as a list of mea-
sures identified by function. Three collections of code follow the
conditional if in create (line 3). These collections (1) terminate
the function if its form is complete (line 3), (2) resurrect a previ-
ously composed phrase if in fact the current form letter representa-
tion is a repetition (lines 5-8), or (3) compose an appropriate new
phrase (lines 10-19).

The function compose (called in line 14 of figure 6.4b) initiates the
primary composing functions of the SARA program. Shown in part in
figure 6.5, compose, depending on the level of the user-controlled
variable *recombinance*, employs an FSTN (in lines 3-4) or an RTN

194

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 6.5 The function compose.

1.
2
3.
4.
5
6
7
8

9

10.
11.

(defun compose (creator number-of-measures meter form)
(if (< *recombinance* *fstn-limit¥*)
(finite-state-transition (first *selected-databases*)
meter)
(append (choose-incipient-gesture creator)
(let ((test
(simple-compose
creator
(choose-initial-chord creator meter)
number-of-measures meter)))
(if *repeat* (make-repeat test) test))

12.

13.
14.
15.
16.

(list (splice-cadence-channels
(choose-a-cadence creator form)
(list-appropriate-cadences

(second form)))))

17.

(in lines 5-16). In line 5, compose chooses an incipient gesture and
then, using the function simple-compose, progresses to the recom-
binatorial process. The function splice-cadence-channels (line
13) controls the MATN of the appropriately chosen cadence.

The function simple-compose (shown in figure 6.6) is perhaps
the most revealing function in the composition code. The variable
history (in line 3) stores the measure names chosen by this
function. This variable is useful for examining compositions at a
measure-by-measure level. Lines 4 to 11 ensure that cadences that
are part of signatures remain intact with those signatures through
the variable *cadence-match* (in lines 10-11). The function
interchange-channels (line 12) regulates the MATN of the cur-
rently chosen measure. Note that simple-compose calls itself with
the current results of its composition choice (lines 1346 are a recur-
sive call to simple-compose). The variable pre-dominant-1ist
(lines 28-29) controls simple-compose as it approaches a cadence
(two chords from the end as shown in line 27). This process helps to
ensure that cadential choices will not be grafted into place. Other-
wise, resulting progressions will sound odd at best or mismatched
and without resolution at worst. In line 38, remove-last-chord

Figure 6.6 The function simple-compose.

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 195

1. (defun simple-compose (name measure-name number meter)

2. (if (zerop number) nil

3. (progn (push measure-name *history*)

4. (if (and (match? (eval measure—-name))

5. (= number 1)

6. (null (next-measure measure-name))

7. (match?

8. (eval (concat

9. (get-phrase measure-name '-cadence))))
10. (setqg *cadence-match*

11. (concat (get-phrase measure-name) '-cadence)))
12. (cons (interchange-channels measure-name meter)
13. (let ((destinations

14. (get-destinations

15. name

16. measure-name meter))

17. (last-chord

18. (get-last-chord name measure-name)))
19. (simple-compose

20. name

21. (cond

22. ((and

23. (match? (eval measure-name))

24. (if (next-measure measure-name)

25. (match? (eval (next-measure measure-name)))))
26. (next-measure measure name))

27. ((twop number)

28. (let ((pre-dominant-list

29. (get-predominant destinations)))
30. (make-best-choice

31. (get-destination-note measure-name)
32. pre-dominant-list

33. (get-new-first-notes-list

34. last-chord pre-dominant-1list))))
35. (t (make-best-choice

36. (get-destination-note measure-name)
37. (remove-matched-objects

38. (remove-last-chord last-chord destinations))
39. (get-new-first-notes-list

40. last-chord

41. (remove-matched-objects

42, (remove-last-chord

43. last-chord

44, destinations))))))

45, (next number)

46. meter))))))

196 EXPERIMENTS IN MUSICAL INTELLIGENCE

m INTERFACE

guarantees that progressions of like functions will not suffer from
excessive measure repetitions. The function make-best-choice
(called in lines 30 and 35 and shown previously in figure 5.21), a pri-
mary ATN function in simple-compose, aligns destination notes
and otherwise attempts to create the best progression and connec-
tivity. It is important to remember that make-best-choice’s selec-
tion correlates directly to the quality, correctness, and size of the
datatase being used. Large, well-honed databases allow make-
best-choice to find multiple possibilities and thus excellent con-
tiguous measures for composition. Small databases force make-
best-choice into reconnecting previously connected measures or
making poor choices.

Designing and implementing application-level interfaces for com-
puter applications intended for more universal uses present enor-
mously complicated problems. Aside from the purely practical diffi-
culties of selecting and ordering items for menus, windows, buttons,
and tables, one must tackle the requirements of interface simplicity
and program access. Interfaces should be straightforward and pro-
vide uncomplicated protocols for operating and controlling the pri-
mary program commands. Interfaces should also provide access to
the program variables, which allow users to achieve diverse goals
and personalize their creativity. Unfortunately, the requirements of
interface simplicity and program access often contradict each other.
Simple interfaces often produce demonstration-level programs inca-
pable of diverse or sophisticated output because of their lack of
access to the program variables. However, interfaces with extensive
access to program variables are often counterintuitive and can
allow poor choices, leading to ineffective output.

To solve this difficult problem, the EMI interface follows the guid-
ing principle that, whenever possible, the values of program variables
should be inherited from the databases used for composition and not
set by users. This inheritance ensures that as many stylistic links as
possible will be made between the databases used for input and the
resultant compositions. Determining output phrase lengths serves as
a good example of this principle. Although allowing users control
over the output phrase lengths could be considered a valuable tool
for composition, EMI assumes that users are most interested in

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 197

retaining the style of input works. Thus, EMI creates output with
phrase lengths inherited from those of the databases used for compo-
sition. Such inheritance avoids the possibility that users could create
phrases with stylistically atypical lengths. On the other hand, allow-
ing users to select the level of recombinancy and, by inference, the
type of compositional recombinancy (FSTN and RTN at low settings
and ATN and MATN at high settings) is an appropriate user-controlled
variable as this information cannot be inherited from the database
and different approaches can produce unique and successful results.

Pattern matching provides another good example of an interface
complication arising from the dichotomy between interface simplic-
ity and program access. As chapter 3 points out, a good musical pat-
tern matcher may have dozens of controllers for pattern matching
with different musical styles. However, providing access to such
numbers of controllers can produce confusing interfaces. In such cir-
cumstances, controllers can often compete with one another or have
conflicting definitions. Interfaces with access to large numbers of
controllers present an imposing complex of choices for even experi-
enced users of the software. However, a simple four-controller pattern-
matching interface, given that the controllers are well chosen, can
provide user access to the basic principles of locating signatures
while not unnecessarily complicating the interface.

Choosing appropriate musical forms represents an even more
complicated interface problem. Inheriting form can be enormously
difficult. In some incarnations of EMI, works are stored in very large
single files and then analyzed for form before or during composi-
tion. However, such analysis is time consuming and often crude at
best. Other EMI implementations allow users to select letters repre-
senting sections such as A and B for AB (biparte form) or ABA (tri-
parte form) output. However, as with the previously mentioned con-
trol of phrase lengths, users can create stylistically uncharacteristic
forms and create combinations of section designations for which
there are no loaded databases. A third type of EMI interface employs
user selection of databases with section suffixes. This approach has
proven to be the most successful balance between interface simplic-
ity and program access and is the one used in SARA. The program
produces simple forms on the basis of user-chosen databases that
are ordered according to the selection sequence. Thus, selecting
“marshal-x-one-7/22/354” and “marshall-x-two-7/11/1,” for example,
automatically creates an AB, ABA, or similarly standard form. The
“intro” (for “introduction”) section name provides the single excep-
tion to this rule and always comes first to avoid stylistic clashes of
introductory material falling in nonintroductory situations.

198

EXPERIMENTS IN MUSICAL INTELLIGENCE

Program speed is another important consideration for interface
design. Loading and composing often require significant amounts of
processing time. To avoid such extensive computation periods,
good interfaces often break up tasks into more manageable subtasks
that allow users the opportunity to develop their own strategies for
composing. Separating pattern matching from composition, for
example, allows two very time intensive activities to be treated inde-
pendently and permits faster composition. Also, such separation
allows pattern matching for signatures without composing. Knowing
about such time constraints while designing the interface level can
also help determine choices of, for example, the types of pattern
matchers (serial, parallel, etc.—see chapter 3) or types of storage
(phrase database files instead of work database files, etc.), choices
that can greatly affect computational time.

Obviously, software that composes fast but creates poor output
is not better than software that composes slow but creates good
output. However, weighing the need for reasonable composition
time against the need for quality output often leads one to choose
program procedures more logically. For example, storing the analy-
sis of the various measure objects in databases rather than making
such analysis a part of the compositional process was the result of
attempts to reduce composition time. As an indirect benefit from
this time-saving approach, redundant analyses of works were fac-
tored out of compositional runs.

Some interface component settings cannot be inherited. Most pro-
nounced among these is the use of counterpoint in composition. For
example, both fugue and invention forms require conscious choice by
users and cannot usefully be inherited from databases. As pointed
out in Computers and Musical Style (Cope 1991a, chapters 4 and 5),
counterpoint generally requires special programs that require output
to adhere to specific rules pertinent to the particular chosen form. All
EMI and SARA interfaces have user access for the choice of contra-
puntal forms.

Finally, some aspects of the EMI interface provide superficial yet
interesting variations of output. Choice of mode (major or minor),
key, dynamics, and so on, although fully inheritable from the events
and objects in databases, remain controllable at the interface level.
Having the option to perform works freely in any mode, key, or
dynamic seems fundamental to the curiosity of users regardless of
the effect on the resultant style of the output works. These super-
impositions, as well as all the previously mentioned interface com-
mands and variables, are amply documented in the SARA user’s
manual on the accompanying CD-ROM.

m VARIATIONS

AN APPLICATION-LEVEL PROGRAM AND SAMPLE QUTPUT 199

Johann Philipp Kirnberger’s Methode Sonaten aus’m Ermel zu schiid-
deln (1783; see the discussion and figure 1.5 in chapter 1) demon-
strates the effectiveness of rewriting and converting musical mate-
rials until the original is no longer recognizable. This involves a
variety of standard compositional techniques, such as the scalar fill-
ing in of leaps, the addition of anticipatory notes, the arpeggiation
of chords, and so on. EMI has an extended program for just such
conversions. SARA has an abridged version of this program that
principally concentrates on the addition of scales to otherwise skip-
ping figures. In EMI, the use of such conversion techniques is based
on an analysis of their presence in the original databases used for
composition. However, because such additions are not easily inher-
ited and because they are not acceptable in all styles of music, their
incorporation in SARA is not a matter of inheritance but rather a
matter of setting the *recombinancy* variable high (see the dis-
cussion of recombinancy level in the SARA user’s manual on the
accompanying CD-ROM).

Adding scales to melodic leaps is a factor of interval distance and
the duration of the initial note. In the case of the leaps of thirds, inter-
mediary notes are added when resultant durations exceed a sixteenth
note (250 ticks) in length. Adding scales to larger leaps can occur only
when producing even divisions of note values (ie., duplets and
quadruplets but not triplets, as they are not common to all styles) and
when added durations exceed a sixteenth note in length. This latter
condition makes larger leaps increasingly difficult to fill with scales.
Neighboring tones may be interpolated between repeated notes as
well. In EMI, such additions result from musical considerations. In
SARA, such additions are random because musical logic requires
extensive analysis, which increases composition time exponentially.

Form in SARA is generated automatically according to an algo-
rithm that bases its decisions on two factors: the data loaded and
then selected for composition and the concept of balanced phrases.
The first factor generates form containing all the sections available
for composition. Thus, if only a “two” section has been loaded or
selected, only variants of this section will be generated. If sections
“one” and “two” have been loaded or selected, then only variants of
these will be generated (see the previous section for examples). With
the exception of section “intro” (for “introduction”), the order of for-
mal generation is user selected rather than predetermined. In the
second factor above, the form algorithm attempts to create balanced

200

EXPERIMENTS IN MUSICAL INTELLIGENCE

phrase pairs to complete logical periods or sections. This follows
standard classical traditions. EMI, in contrast to SARA, creates form
templates on the basis of program interpretations of music in
ordered phrases in the loaded databases.

Treating mode superficially reduces the overall effectiveness of
the currently implemented SARA program (in EMI, mode is an inte-
gral part of composition). Clearly, the choice of mode (major or
minor) is an important factor for composers, and compositional tech-
niques vary depending on this choice. However, introducing mode
into the composition process can complicate code immensely. This
complexity begins with the definitions of chord function (see chapter
2), which need to include all chord variants in minor as well as major,
and extends to all functions which depend on diatonic transposition
(principally certain forms of tonal pattern matching) for their opera-
tion. However, the SARA object system does contain an attribute for
mode and some may wish to add mode sophistication to this aspect
of the program.

Tempo, on the other hand, is an attribute of phrase objects and
storing music of similar tempi in a consistent database is advisable
and possible. Therefore, tempo can currently be a significant factor
in composition in both EMI and SARA, if so desired. Other parame-
ters such as timbre, articulation, and so on remain outside most cur-
rent implementations of, and programs modeled on, EMIL

Modulation requires elaborate recognition, analysis, and compo-
sition code. EMI contains functions that analyze the key of the ter-
mination of phrases and includes cadences in new keys on the basis
of a combination of inner-phrase modulation and formal consid-
erations. SARA (see discussion in chapter 5) has an embryonic sub-
program where the use of new keys is relegated to the need for con-
trast in larger forms and, more subtly, on the basis of modulations
suggested by phrases in loaded databases. At present, this rather
trivial approach allows for faster composition with less effect on
memory but creates fairly restricted modulation in output.

The superior quality of the output of EMI vis-a-vis SARA is the
result of (1) the difference in the sophistication levels of the pro-
grams (e.g., SARA’s need for a fast, simple interface), (2) the quality
and size of the EMI databases (often encompassing entire oeuvres of
some composers), and (3) my own aesthetic judgments with EMI in
eliminating works that I perceive to fail while elevating those that I
perceive to succeed to performances and ultimately to recording
and publication. However, many of EMI's successes have required
herculean amounts of hard-disk and RAM memory and equally her-
culean time periods for composition (often a week or more). I do

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 201

not know how many good compositions failed to emerge because of
power surges or outages. SARA creates music in a minuscule frac-
tion of the time and memory required of these original EMI goliaths.
SARA suffers, however, from many shortcuts that were deliberately
taken to make the program more user-friendly and accessible. Such
are the trade-offs when creating more portable software.

m SAMPLE OUTPUT AND EXTENSIONS

Figure 6.7 shows, in both notation and partially in event form, a
composition produced by the software on the CD-ROM accompany-
ing this book. This SARA-Joplin rag shows many of the attributes of
the Joplin rag of figure 5.25 in Computers and Musical Style (Cope
1991a, p. 175). The events (see figure 6.7b) are shown here to dem-
onstrate the appearance of the output of the program. Although the
musical output of this program (and, for that matter, EMI at times)
is not consistently of the caliber presented in this and other exam-
ples, it is sufficiently interesting and musical in most cases to be of
value.

Figure 6.8 gives a diagram of the basic sources of figure 6.7. Here
the program has used measures from the “palm” and “syca” files of
the “intro” (introduction) database. A quick survey of the readable
versions of these files on the accompanying CD-ROM will affirm the
logical use of the remaining measures in this recombinant music.
This example provides a typical compositional situation in which
measure fragments of various phrases have been chosen and com-
bined into new, viable phrases. The use of MATN and other individ-
ual voice manipulation has been kept to a minimum here to show
the derivations.

Figure 6.9 presents a more dramatic example of recombinancy
created by a more advanced version of SARA: the opening measures
of a sonata first movement in the style (arguably) of Beethoven. This
music demonstrates the influence of Beethoven’s Pathétique and
Appassionata sonatas shown in figures 6.10a and b. The chordal
structures at the beginning of the machine-composed Beethoven
clearly resemble transposed versions of those in the Pathétique. Less
obviously, the melodic octaves seem drawn from the opening triadic
outlines of figure 6.10b; however, the double octaves are replaced by
single octaves, so perhaps the music has been drawn from another
sonata (parts of at least ten Beethoven sonatas were in the database

e I e et e Nt N et

202 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 6.7 a) A SARA-Joplin rag. b) Beginning of the
event code.

e~ 10
=552 = e e
= A
e i e
ey = Lt CEE e
=1 pr—
SusssSteiss s —

-
)

e A —— = iiﬁ' [>
— e e ' = e
=t = o o

b.

(setq joplin-save-work '((0 72 250 1 100) (0 60 250 2 100)

(250 71 250 1 100) (250 59 250 2 100)
(500 69 250 1 100) (500 57 250 2 100)
(750 72 500 1 100) (750 60 500 2 100)
(1250 71 250 1 100) (1250 59 250 2 100)
(1500 69 500 1 100) (1500 57 500 2 100)...

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 203
Figure 6.8 Sources for beginning of the SARA-Joplin
rag shown in figure 6.7

joplin- joplin- joplin- joplin-
rags- rags- rags- rags-
infro- —P infro- —P» infro- —» intro- >
palim/1 syca/1l syca/1 syca/1
mea 1 mea 1 mea 3 mea 4
joplin- joplin- joplin- joplin-
rags- rags- rags- rags-
one- —P one- —P one- —» one- >
orig/9 some/5 some/5 peach/t
mea 9 mea 8 mea b mea 8
joplin- joplin- joplin- joplin-
rags- rags- rags- rags-
one- —P» one- —P one- —P> one- >
peach/5 leola/1 orig/9 orig/9
mea 9 mea 2 mea 156 mea 16
joplin- joplin- joplin- joplin-
rags- rags- rags- rags-
one- —> one- — one- - '> one- '>
orig/9 some/5 some/5 peach/5
mea 9 mea 8 mea 5 mea 8
joplin- joplin- joplin- joplin-
rags- rags- rags- rags-
one- —P»| one- | one —P»| one-
peach/5 leola/1 palm/13 paim/13
mea 9 mea 2 mea 19 mea 20

204 EXPERIMENTS IN MUSICAL INTELLIGENCE AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 205

Figure 6.9 An EMI-Beethoven piano sonata Figure 6.10 Tf;eo be%nai:g%s) pff_ Bee)ﬂzgvccgn's5 s70nofcs:
beginning. a) Op. étique). p.
° ° (Appassionafa).
| ! i © n
: AR — g = v —
#.. \/t
. = — . 7 = a
5= =
! $t35 3 8 T g 2 :
—F 5
g 1 ° P . . I
G} S 5o e
5, | 1] qﬁ;; i 11 ! ' @ q-&z
- »-
e ¥ PRGN .
2 = === = =51 =: gﬁé
(X3 h
H ! 10 ,
bbh o —F Ty =
R = F 1 3+ ¥
P
h » » - | | } I ! e b +
e s S ety = ‘vﬁg;. 5;.{}3 | S
r pp g
AR ——FgreE—lea: ;
—— e
L#

from which figure 6.9 was composed). The double-dotted quarter
notes in the machine-composed example are a result of ties across
harmonic repetitions rather than rhythmic inheritance.

Figure 6.11 shows the beginning of the allegro section of the
Beethovenesque sonata movement. This too is the result of an amal-

The transition from theme 1 to theme 2 of the SARA-Beethoven

gam of at least two different sections of Beethoven sonatas shown in shown in figure 6.13 seems more drawn from Mozart’s C-minor
figure 6.12. The “rocking” motion of the left-hand accompaniment is Fantasy (K. 475; see figure 6.14a) than Beethoven’s sonatas. With
prevalent in both the Beethoven examples, the right-hand material the hands reversed and the rhythm augmented, these two exam-
clearly being drawn from an inversion of the example of op. 2, no. 1, ples seem quite related. Beethoven was particularly fond of this
possibly the result of MATN with another section of that same work by Mozart (also see the discussion on the related K. 457 in
sonata. This composite, as was the case with the opening material, figure 1.12 and associated text). In terms of inheritance from
is a good example of the result of databases honed by selecting simi- Beethoven, the SARA-Beethoven seems derived as an inversion

lar material for recombinant composition. (MATN) of the left hand in the transition back to the recapitulation

206 EXPERIMENTS IN MUSICAL INTELLIGENCE AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 207

Figure 6.11 An EMI-Beethoven sonata beginning of Figure 6.12 Beethoven’s sonatas: a) Op.2,no. 1,
an Aliegro section. first movement, mm. 19-30.b) Op. 13
(Pathétique), first movement, mm. 11-15,
Le 1 1
%dz‘v . = 1 — 5 e i—4 : a
S ' ——— NI N = NV
Sf == ;——ci — === —
e 2 = = e == = = s » s @ % ¥ » ;o
e = e e e e T | | s » 2 2| 2 2 2 2lbdT Ye e
f e e e e
A 4[0 i i T T
} 1 -
e ——— =E=iESEE == , e
D) T 4 - | I |2 > 1 T n 1 a4 F Y b] 1 1 s
R SSiTmT —F—r— ¢ =
e » = » e & 2 » s 2 2 s - s - ! -
S
—r—F L T F 2 2 2 2|ldT Yr 2| 2 peper| , p,e 2 »
P e e e e e e e e e e s
N L 45 -
——— e —5 —5 (A ha\
v * - I 5 : o r i ‘ F 1 ‘ p I - " PN PN 4— -
© 24 ~J ~ ~ ~ = e e e e e e e
e 2 2 2|l be o o ol be o . .| ®
e e 2 2 heoa|l 2 2t a2 -
- oot » i s < — - be
S e e S e e e e S e e e e e
oo nanae e] Loammaleme=st®
N — — |
‘:‘; J\ 1 hj‘)g'. = i'l\» \r t ":\, - s ‘;‘; J\ —i = Ed: - Allegro di molto e con brio | PR)
D) ¢ T < & [° . - 1 or——— b—er2
e A e P T s
; q S 1 T ' 1
s }’. 'h-,: > = = T = = — — = b = " :4]: cresc.
B i i — B =i o= B = S EEmr=—c]

4|
|
4
&
o
)|
Y
&l
q

208 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 6.13 An EMI-Beethoven sonata fransition and
second theme.

Qi
N

T

-
[\J
]

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 209

Figure 6.14) Mozart, Fantasia in C minor (K. 475),
mm. 173-74.b) Beethoven, Piano Sonata,
op.2,no. 1, first movement, mm. 95-104.

d
™
i
i

_R
I

et
el

R
G

31

il

q1¢

o

R AL = P e

.9. h -‘h

_ £ e e lio I .
e =S
!, o o~

]

0O 1 , | i B
\g 11 T T)| T T | 1 1 + +
@b,}’ 1 JI 1 Fey 1 i 1 1 1
T
D] :lt O : ‘ Eit Eit
- p
D H> S S S o o
| 7R} p 5 vl 1 j m— | 1 H
Yy 1z]| Il = 1 J f e— 1] 1

1
\

in Beethoven’s op. 2, no. 1, first movement (see figure 6.14b).
Again, the complexity of the various responsible code makes the
absolute identification of the sources nearly impossible.

The secondary theme of the machine-composed example (shown
in figure 6.13 beginning in measure 60) represents a composite of
many different Beethoven themes. Therefore it is difficult, given the
various competing processes involved, to determine an explicit
inheritance. Figure 6.15 shows two similar examples: the first theme
of a sonata and, interestingly, the main theme of a work Beethoven
originally wrote as a second movement to his Waldstein Sonata, op.
53, but later discarded. This latter theme bears an uncanny resem-
blance to the second entrance of the theme in figure 6.13 (beginning

210 EXPERIMENTS IN MUSICAL INTELLIGENCE AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 211

Figure 6.15 Beethoven themes: a) Op.2,no. 3, first Figure 6.16 EMI-Beethoven closing theme.

movement, mm. 1-4. b) The beginning of

Beethoven’s Andante favori, WoO57 3 3 - o —
(1804), mm. 1-8. S ‘&M— —_ e e ——— =
v - = » b= = &
9. Allegro con brio
/) ——— —r— | s 2 2 Q2
(s i i ———1 t I qi - T T — E # - - > }” IB lla [B :” IE
SR S ¥ & T A S AT B | | | | i |
p ~ ~— 175
Q [@] H (o] = =) T h.) Y lxlﬂ —1 p— ; : T S H
e o . S —= e e e e ——
i > e & @ — ©
T °] LR ¥ ¥ 8
| |
Andante grazioso con moto o) : = :a]) 'S
o Momegemewenmee N~ SE= : B |
'l [— T I & & ©
i a—e] ' —— } . T
174 (o 4 » - -y s - -
D) V o | V I' g g 5
P dolce
cresc. This SARA-Beethoven movement has moments of obvious
Q;_I_:;—! r g . —— —— e — sources (almost quotations). However, it has occasion to be sponta-
> F : 7 i .: EE - — neous and ingenious in its interweaving of inherited materials. In
! many instances, such combinations of inheritance and spontaneity

produce music of worth beyond that of simple interest. This kind of

N /ﬁ—\,_ == /’\ composition occurs as the result of program interplay and, most
: e e o e e =S ;rEr K important, balance between the various constituent parts of the
T V f T _}F ﬁ e program, with none taking precedence. The music simply sounds in
p— cresc. |sf V the style of the original and has no single recognizable source.
- _ . p As previously mentioned, counterpoint is considered a special
ﬁ:ﬁ - == i s — case by EMI and SARA. Contrapuntal forms cannot be inherited in
= ? ¥ o — —— > quite the same way as homophonic forms. Inventions, for example,
~_L_r require code that alternatively exchanges voices and ranges such
— that an invention-like texture and imitation occurs. Figure 6.18

shows the beginning of an invention created by SARA using a
Mozart sonata database, chosen to underscore the invention form
rather than the more likely baroque idiom that typifies this form’s
appearance. One or more of the voices in the databases have been
removed by the program, the resulting two voices demonstrating
the simple but effective imitating aspects of the invention form.
Forms like the fugue may be achieved texturally by using ATNs for
connections in all voices. For example, using a multifugue database
and employing all channels to select exact destination notes results
in a work with the same additive form as the fugues in the database.
Rests will seek rests, notes will seek exact next notes, and so on.
However, the resemblance stops at this point: the actual entering

in measure 70), especially because it was not in the database at the
time of the composition of figure 6.13. Signatures may well be pres-
ent here, but, with the possibilities of melodic, harmonic, and ac-
companiment MATN variations, it is quite difficult to discover them.
At its best, EMI and SARA produce music with transparent seams
between recombinant and signature elements. The closing theme of
the SARA-Beethoven movement (shown in figure 6.16) appears to
be an amalgam-signature of various of Beethoven’s ending gestures,
three of which are shown in figure 6.17 and all of which were in the
database at the time of composition.

212 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 6.17 Beethoven sonatas: a) Op. 13.last

movement, mm. 205-210.b) Op. 7. third
movement,mm. 139-49.¢) Op.2.no. 1,
last movement, mm. 193-96.

2. e

qa. :_‘._
a) ; I a b Z rthf-f' o)
t'r) T () S < 1 : \l \l 1 { ‘x ‘x == -] {I 5 ! >
. = . . : : SSis s
pp i
/—\
L
s bd 1. ‘ | o
© 11 1 v
: — 1 y Y r - 1 r 1 - y i ; -
5 —= —=—% = 3
b.
A 1 :
by 7 : : : :
o —f 2 B
»p P———F
; T ! ’3 —r" T
O qt — - T—1 - -
- e i e A e o -
— & — -0 — - L E - - E o E B L
o bt ! ; : i ! : : ; M;_
5‘ [lv‘l»'\ L ’i T : ': L] + "’“ B
© ~? = o — ? - 1o
" s LB]
O 11 ‘ﬂ 1 1 11 1 l | I 1 1 1 1 i r -r
S e L=l :
v - & - - & R - - - B2 -6
¢ . oo £ * lee , £
s i erleite. £o, Lefe ite. Eo,
et e e e e e
) 3 <
Jf
£ ¥ > =|h.~§
S T——— F i — : ; =

AN APPLICATION-LEVEL PROGRAM AND SAMPLE OUTPUT 213

Figure 6.18 Beginning of a SARA-created invention

using a Mozart database.

A

Se » o
I >

T T T 1 i.—: — P_IF_P;_ ———F IL;

} B fom—— R
@ — ‘= AI 1 :s‘[A'_J lril—— i] i — &
S oo ==—===——====c=C=

'JH;_!:!'— ! — y .

»-
- »Z z T . = -
T 1 é ;F—__fl ¥—i IF :F ii é‘:[‘E—sl

voices will not imitate one another. Creating a fugue proper is a spe-
cial case requiring additional code.

EMI and SARA use a simple model to create fugues and other
canonic forms. Composing music in these forms is traditionally diffi-
cult, partly because the rules require certain types of structured addi-
tive counterpoint, especially in their expositions. Both EMI and SARA
create fugues by using subtractive counterpoint. The thickest texture
is written first, then voices are subtracted gradually to create the
additive texture when performed in reverse order. The concept is sim-
ple: if the thickest multivoiced texture created by a traditional ATN
recombinancy is successful, then the program assumes, true or not,
that the various thinner-voiced textures will also work. Thus, the code
for creating fugues first composes a thick fugue-textured phrase,
copies that phrase with one less voice, and then places this phrase
before its former version. This process is repeated until a single voice
is left. Thus, the fugue exposition, at least, is composed right to left so
that the last material created is the first heard. Thus, with little added
code, the program can create simple fugue expositions. Obviously,
composing more intricate fugue expositions (including appropriate
tonal and real answers, etc.) as well as fugue developments, strettos,
and recapitulations lies beyond the scope of the SARA program as
now constituted. However, EMI has composed substantial fugues

214

EXPERIMENTS IN MUSICAL INTELLIGENCE

using this type of process (see Cope 1991a, figure 5.38) as a fundamen-
tal principle.

SARA code can also be user-extended in a number of meaningful
ways. First, adding databases can not only provide access to differ-
ent composers and styles but also enhance those already provided
with the application. Creating databases requires some skill and
determination but can produce quite successful results. This process
is an integral part of EMI and SARA, and users are encouraged to
read the manual on the accompanying CD-ROM for instructions on
how to select, prepare, enter, and save new databases. These new
databases could, if so desired, further extend the program in areas
such as mode and tempo recognition (see chapter 4) and further
explore the program’s potential for texture development (most of the
included databases use only two or three of the sixteen MIDI chan-
nels available). Second, users with a general knowledge of LISP and
CLOS can add variables to the pattern matcher by following the
descriptions provided in chapter 3 or by defining their own. Third,
work with honing and mixing databases can provide enlightening
new perspectives on both musical style and computer composition.
Finally, nurturing new styles by feeding new compositions back into
the databases from which they were generated can be useful and fas-
cinating. This generational composition has produced both useful
and intriguing new compositional styles. SARA could be further
expanded to include more complex forms described by either the
program or the program’s users.

Chapter 6 of Computers and Musical Style (Cope 1991a) discusses
the mixing of musical styles (see especially figures 6.4 and 6.5 of that
volume). Such mixing is possible with SARA by creating databases
consisting of music from different styles. The results are sometimes
useful but more often humorous. Because of the measurelevel
recombinancy in SARA, mixing styles tends to be terraced, and the
shifts between the music of one style and another are usually clear.
Using duple- and triple-measure databases emphasizes this fractured
result. However, smoother compositions in which shifts of style are
less focused can be created by using mono-measured databases,
employing MATN, using variables such as ties, and allowing the pro-
gram to randomly fill leaps and add other embellishments (available
with high levels of recombinancy). This can produce interesting
blends of styles and even new styles in which recognition of the origi-
nal databases is difficult if not impossible.

The preface of this book suggests that SARA may be useful for
composers, musicologists, and analysts, among others. There are a

AN APPLICATION-LEVEL PROGRAM AND SAMPLE QUTPUT 215

number of ways in which this may be possible. First, if the user is a
programmer in LISP or has access to such a programmer, the SARA
source code may be altered, augmented, or used as a model for
larger, more sophisticated applications. EMI itself is a good model
for just such expansion. Secondly, any one or more of the modules
may be used separately to achieve a noncompositional goal. The
various stages are stored in different files to make such use easier.

L/ A ﬁ
a8 CD-ROM

The manual for SARA provides important information on
how the various application-level functions presented in
this chapter connect to the various menus, windows, but-
tons, and tables of the user interface. Composing with SARA
and then calling the variable *history+ in the Listener
window provides a source log of each composition run and
a useful encapsulated view of the SARA compositional
process. Loading, observing, and playing EMI files in SARA
shows how the output of SARA conforms to that of EMI and,
with the exception of EMI's longer forms and more elabo-
rate databases, is a good opportunity to compare the qual-
ity of both outputs. 4

SEVEN

Conclusions
and the Future

Theorist Edward Cone has remarked, “It has been said that some of
the most important scientific discoveries have resulted from taking
seriously questions that are usually assumed to be trivial” (Cone
1968, p. 11). I hope this is true because I have steadfastly main-
tained that my research with EMI has focused on a very few simple
ideas. These ideas are signatures (Cope 1991a), often called formu-
lae (or clichés) by others, and the composing process (notably that
it is recombination more than creation). These ideas can be seen as
trivial, but I see them as significant and have devoted an enormous
amount of time attempting to demonstrate their relevance to musi-
cal style and to the precepts of composition.

In this chapter, I will describe my attempts to expand the poten-
tials of EMI. This will include a description of a reflexive version of
EMI that composes without intervention from users. I will further
detail my explorations with EMI beyond the realms of pitch and
duration. I will also describe in some detail how EMI can be used
effectively without MIDI. I will then attempt to develop some conclu-
sions and deal with some of the controversial aspects of EMI and
computer composition in general. Finally, I will speculate on the
future of computer music composition, particularly that form of
computer composition that strives to imitate either the music or the
processes of human composers.

217

218

EXPERIMENTS IN MUSICAL INTELLIGENCE

m EXPANDING THE PARAMETERS

One more recent version of EMI incorporates a reflexive pattern
matcher that identifies signatures without user input. This heuristic
version of EMI requires only that it be loaded with music in a given
style but otherwise is self-sufficient. The algorithm in figure 7.1
should serve as a useful outline of this program. The input works
(A) are stored in standard database files as described in chapter 2.
Instead of phrases, however, works are stored as single megalithic
entities with cadences and phrases determined by the program
when loading these files. These works are then statistically analyzed
(B) for eventual comparison to the program’s output to discover
whether such output favorably matches the analysis of the pro-
gram’s input. This analysis includes such parameters as repeated
notes, occurrence of leaps followed by steps, incidence and types of
scales, tessitura of the various parts, and so on. The statistical
analysis also initially sets the program’s controllers (I and J) by
loading the controller source file (K). The settings in this file are
default values; “learned” values from previous program evaluations
are stored in (L).

The pattern-matching process (C) locates signatures as described
in chapter 3. The pattern matcher stores the signatures it discovers
in a dictionary (D) that supplies these, along with the analysis of the
works, for replication (E). The arrangement of signatures in repli-
cated works is accomplished through the use of an ATN (see chap-
ter 5) that maneuvers signatures and other recombinant material of
varying lengths to logical rather than random positions. This posi-
tioning depends on factors inherent in the signatures themselves
and how well they satisfy certain criteria.

Once created, new works (F) are analyzed statistically (G), and
that analysis is compared (H) with the previously completed statis-
tical analysis of the input works (B). If the comparison is successful,
then the work is saved in a destination file (M). If the comparison is
not successful, then the program’s controllers are incrementally
altered (I, J) and the program begins again. If a controller reaches a
point where continued incrementing has little effect on the statisti-
cal analysis of output works, the next controller increases and the
former one remains fixed at the level it created the most effect. Suc-
cessful controller settings are saved for future use (L). The seg-
mented arrows to the files (L) and (M) serve to highlight the fact
that compositions and settings are not saved to destination files
unless successful comparisons of their statistical analyses have

Figure 7.1

Controller
source
file

CONCLUSIONS AND THE FUTURE 219

A reflexive algorithm for EMI.

) Legend
= files

= data

00O

program activities

Cdlibrate
tolerances

Controllers

Controller
destination
file

Statistical
analysis

D. E F M
7 ™\
Signature Replication New i
! New music
Pcc’;ffe;‘rj opcllySIS (ATN) P work destination
matching dictionary file
G. £
Statistical
analysis
H.
Comparison
»| of -
statistics

occurred. Either the source file (K) or the destination file (L) of the
controllers may be initially loaded, depending on whether default
or previous altered settings are desired.

This version of EMI has the advantage of operating indepen-
dently of user biases. As a consequence, the signature dictionary
may produce more authentic signatures because the program is not
being controlled by a user familiar with the music of the composer
under study. It also can provide successful controller settings for
pattern matching that can then be honed by users. Problems with
this version of EMI include mistakes of cadence identification and
key determination as well as problems with the use of idiosyncratic
statistical models. At the same time, such a program provides an

220

EXPERIMENTS IN MUSICAL INTELLIGENCE

example of musical heuristics, with the resultant controller settings
giving a firsthand demonstration of a self-controlled program learn-
ing, however crudely, the parameters of new databases and their
inherent musical styles.

Until now, all the work accomplished with EMI has concentrated on
pitch, duration, and (to some degree) texture and form. For similarly
timbred tonal music (piano sonatas, string quartets, etc.), limiting
composition to these parameters seems logical and has proven to be
highly productive. However, tonal music of more extended timbral
resources, and especially nontonal music of the twentieth century,
requires more ubiquitous pattern matchers, especially ones that can
correlate many musical attributes at once. Obviously, musical style
depends on many other factors than just pitch and duration.

The most conspicuous nonpitch, nonduration, and nontexture ele-
ments are dynamics, timbre, rubato, and articulation. However, these
elements may not lend themselves well to ATN types of musical
recombinancy. It is hard to imagine, for example, another dynamic
substituting for “p,” another instrument for oboe, or another articula-
tion for staccato. On the other hand, one can imagine, for example,
the finding of dynamic signatures. Such signatures could then be pro-
tected from recomposition or even be separated from their pitch
counterparts and reapplied to appropriate passages during the repli-
cation process. More recent EMI research has dwelt on this form of
pattern matching. I call the results of such searches hybrid signatures.

Figure 7.2 gives an example from Varése's Hyperprism. This work,
for nine wind instruments and nine percussionists, does not con-
form easily to standard analysis techniques. The pitched sections of
Hyperprism are not strictly twelve tone nor are they functional in
even a liberally applied tonal sense. However, the work is tightly con-
structed with imitative rhythms and timbres on both large and small
scales. A pattern matcher that simply searches for pitch and/or
rhythmic patterns, although it may find signatures, cannot be as suc-
cessful in its searches as a matcher more attuned to other elements.
A hybrid pattern matcher, one that searches for particular rhythms
in a variety of timbral circumstances, will yield more useful results.

Figures 7.3a—c shows a hybrid signature from Edgard Varése’s
Hyperprism in a variety of guises. In figure 7.3a, the signature has a
pitch content of C§ and D, similar to but not exactly the same as the
pitch contents of figures 7.3b and 7.3c. The minor second intervals
between the notes provide a kind of logical glue for all three mea-
sures. However, single intervals do not suggest realistic signatures.
The instrument choice (given as channel information in EMI) and the
rhythmic relationships, however, are quite similar. In fact, the percus-
sion parts are almost identical in figures 7.3a and 7.3b and very
similar to figure 7.3c. This similarity provides the hybrid pattern

CONCLUSIONS AND THE FUTURE

Figure 7.2 The beginning of Varése’s Hyperprism.

Moderato, un poco allegro
longue

221

Flute B2 I ¥ T —
(Piccoio) [ﬁ = % t —
)
Clarinet -) f]
inEb | = £ } |
A)
'FE =
A ™
Horns 2 -) v)
inF % £ :
f"\)
= T
J o)
'| [{mrya > a
'@— > *
Trumpets
inC 0 ol
= : £
" sourd. B
< T
Tenor $ £ $ e ¥ +
Trombones o) Vi
Bass JIEF X ¥
Moderato, un poco allegro
longue
Steigh Belts (1) folionRoar | ? | | foIndfan Drum

1. indian Brum H T o= 1 —1
Lion Roar 4 LR P ff
(Anvil (to m.40)) .)

2. Tambouri " to Tambourine 13 N | |
Slap Sﬁckr@) I's ¢ I L
(after m.63 R ~ 3

. 23

e O L IS I NN w B NN N AR = 3
Bass Drum H—F ¥ LA 3.4 L 4 L 1 4 = L 4 y L 4 [4 1
(Anvil) B.D. = ————— >

05 o S ~ » sourdement sf

4. Snare Drum L“ © Share Drum 13 3 |]

(Susp. Cymbal) I € I 1
to Ratchets
Susp. Cymbat 7~
5. Smail 3_ 2‘ 5 o s
Ratchets Large _rf 'I f
. ~ mf
6. Slap Stick @ fo Siren 11 }] |
" Siren T € I 1
to Chinese Blocks
Triangle 3. ‘).

7. Chinese Blogks
Siap Stick)

(from m.40 70 63)

8. Tam-Tam —3— ~ laissez vibrer ef s‘efeindre
o) 3 [| I |
(to m.40) * — | L 143] 1
(Triangle) Tt > —

(C(Anvi) yiid o)
;o™ P | |
2 Cymbais & - o< e — —
© Anvil (afterm. 40) >

Niid

© Copyright by G. Ricordi & C., Milan. Reprinted by permission of Hendon Music, Inc., Sole Agent.

Figure 7.3 Varése's Hyperprism: a) M.5.b) M. 7.
C) M. 66.
a lb. lc.
(6 & . (£ o (%
L. 1@ = l@] pice. JF& =
—) |
134 = |52) da i
B CL l% —{ sl l'% lecl %‘zj |
0 [&) d
Ny = 1 =
p subito molto crescendo A —3— a
FHn. FHn. 2 SE=ESS= Fhn. o [
==
mf sf =sf ==—sf
e 3 /&
> > =
mf sf = sf ===—s 40
0 0 L
1 1
@* @ CTpt.
CTpt. % Cpt. ° 0
0 0 2
2 % 2| %7
N —
e ~ A
T‘l}:i,‘.‘.l _ﬁﬂ- —\ED—]>> AJ\/*’A
1. ﬂr—_k‘:*—;—iz:%
Ton. Fd < T. v —
B J°E Ton. "J b Ton.
[y
b — B [B—— oy
— B.
1 mf T I
TP — ez
1. I.D. HE!
11,10, @ —J o - |
L
—3— —3—
2. Tamb. i] ; =2. Tamb. |H } 1} ;‘ I2 Tomb !
: : 1
v v lv. 4 TH
3. B.D - - 3. B.D. = - e
VooV o~ — YV vv_ = ~~——— 73.B.D. H—ﬂ——ﬂj—!——| <
I —3 S =i im v = 3
o’) | ——, g
4. sn.D. - 4. 5n.D. , s I
R™) M R M V4 snD H— } |
p> mf> V2 © o R ¢ M 1
S. Cym,! | S. Cym.} » icd
5. S.Cym. [H | S.Cym | } I
prp DO 5. 8. Cym. 1
5. prp
i Rich.
6. Sir.
lr L 6. .St [H }
to Triangle ; |
m 6. Sir. —
7. Ch. Bl. II-H
7. Ch. B,
7. 1 | IL
Lv. AL
BoSst [H— .r}_,al —]
A4 s T Lv.
mf] 8. T -;.EJ. lo. 14+ |—s D v [
frottées I'une contre I'autre - T Tt —
9. 2Cym. |H } o 2cym. 1] | , £,
mp | Y € e] 9. 2Cym. |-|-| & o]

© Copyright by G. Ricordi & C., Milan. Reprinted by permission of Hendon Music, Inc., Sole Agent.

CONCLUSIONS AND THE FUTURE 223

matcher, the one that catches this pattern, with enough data to
identify these as clear signatures, especially when compared with
similar motives from other of Varése’s works. Recognizing and pro-
tecting such signatures from recomposition in extended tonal and
particularly nontonal music allows EMI to analyze and compose
believable music in styles otherwise not easily imitated.

Composing using reflexive and hybrid pattern matchers and with
timbre and dynamics has resulted in an EMI opera called Mozart.
This opera was composed in 1992 and represents an interesting, but
not ideal, collaboration between user and machine program. Under-
standing how the various pattern-matching and compositional ele-
ments coalesce in this work requires a description of this opera in
some detail.

The libretto of Mozart is a rough translation from the original Ger-
man of numerous letters authored by Wolfgang Amadeus Mozart
that I chose and then set to EMI's music in Mozart’s style. Mozart
requires three performers: a vocalist and two shadow players. The
stage for Mozart is a single platform with various pieces of elec-
tronic equipment scattered about. Screens surround the platform
with projections of paintings of the characters to whom Mozart
writes his letters during the performance. These projections slowly
fade from screen to screen at thirty-second to one-minute intervals.
The lead character, Mozart, attempts as best he can to direct his
attention to these moving images.

The nonvocal music for Mozart may be performed by chamber
orchestra or by MIDI controlled samplers. In either case, the orches-
tration should approximate that of one of Mozart’'s own operas.
Both the singer and the accompaniment should closely follow Italian
opera performance conventions. Setting the words to the music was
particularly difficult in that the usual process for setting text
involves the librettist writing the text first and then the composer
setting the text to music. This latter process ensures that musical
accent and meter will fit the desired poetic accent and meter. How-
ever, translating the libretto from German to English while setting
the text to existing music was an advantage in that there are
obviously many ways to correctly translate one language to another
providing a helpful flexibility.

The opera begins in darkness. During the overture, the lights fade
in, and two shadowy figures slowly exhume Mozart’s body and carry
him to the central platform, connecting it to various wires. Finally,
these figures inject Mozart with a drug through a large hypodermic
needle. As the overture concludes, Mozart, now alive, is the worse
for wear. He sits unkempt atop the platform. His eyes are blackened,
and dirt blobs hang from his eighteenth-century clothes. He is wired
both electronically and as a puppet.

224 EXPERIMENTS IN MUSICAL INTELLIGENCE CONCLUSIONS AND THE FUTURE 225

At the beginning of each act, Mozart appears vaguely alert. As he Figure 7.4 EMI-Mozart Mozart, overture:
sings his letters and the act progresses, however, his enthusiasm a) Beginning.
wavers. As each act closes, Mozart weakens, only to be resuscitated
by successive applications of the hypodermic needle by the shadow a.
figures. During the finale, Mozart slowly succumbs a final time. As
the finale ends, however, the audience hears new music in the style
of Mozart never heard by anyone before (EMI has been composing
anew in the style of Mozart during each performance). With a last
burst of energy, Mozart smiles in such a way that we know he is
pleased with this new work. He expires, and the two shadowy fig- Oboes a2
ures carry him back to his grave and bury him. D

Figure 7.4 gives the opening measures of the adagio introduction of
the EMI-Mozart overture and a sample from the allegro that follows. Clarinets b
This music is based on databases from the Don Giovanni and The D]
Magic Flute overtures as well as various phrases from other instru-
mental works. This EMI overture is the first example of music result-
ing from efforts to expand research beyond pitch and duration.
Although these attempts are not particularly sophisticated, this exam-
ple does demonstrate texture contouring as well as timbre and dy-
namic continuity resulting from a combination of heuristic and hybrid Horns P
pattern matching and ATN. All the instrumental assignments and)
tempi were also machine produced as the result of recombinancy.

The timbral and dynamic aspects of this EMI-Mozart overture Trumpets 5
were controlled by the assignment of channels and dynamic values .
in the music stored in the databases. Each staff of the input orches-
tral works was stored as a separate channel (position 4 in the note
events). In one sense, this process hardly represents a significant Timpani %
characterization of timbre. In another sense, however, as with pitch
and duration, whatever salient features of style exist in the assigned
parts of the original music will, at least to some extent, be inherited Violin 1 B
in the recombinant work. This is true, of course, only if proper care S
has been taken to ensure the survival of connectivity and signa-
tures. In the case of this EMI-Mozart overture, connectivity roughly
follows the examples presented in the creation of the various EMI- Violin 2 —
Bach chorales of chapter 5, and signatures exist as the result of the
previously described reflexive pattern matcher.

Tempo inheritance in this EMI-Mozart overture was based solely Viola
on database design. In short, only slow Mozart music was used as a
database for slow EMI composition and vice versa. Thus, the output
music should be true to Mozart’s predilections for composing cer-
tain styles of music for fast and slow music. Because database
design relies on users rather than program control, little progress
has been achieved in defining what differences exist between slow

Hho
b
Ik
I
F
|
)
Ty —

Flutes s

S mp

T

N —

Qi 1
Qb | |
('
Qo)
(ﬂnm;_.
\
Q| |

mp

01N
\IER
K

Bassoons

(120}

I
Qi

oL L
&
&
&
o
[
)

oL g ol
Qg oHalll
')
(<h

r
o | M-
T
N (R ¢
B[R ¢
Torth |y
3 TR
(LA VAR
)
o
<
1=

mpette]
]
brapsbanteed
ettt
[idepintnd
ettt
bathdend
1
hhedd

)
2y

<
L
o <

[IHNR

TH[
n
N
S
A

div. P
V.|

a
<< T}
/

Ly
Qlli
1L

Cello :

Q_,_‘_

L
A1
L ~§ IS '% L

L
N

Bass

\BEE

%
@

@]

LRl o IF
“TTOR
TIo®

AR08
N
il

Py

mp

226 EXPERIMENTS IN MUSICAL INTELLIGENCE CONCLUSIONS AND THE FUTURE 227

Figure 7.4 b) Allegro. Figure 7.4 continued.

b.
A Allegro 45 50 22
Flutes — = = = = A - - - — - - I{
S
a2
Oboes — = = = = Ob — - - - - - ‘1}
S
a2
Clarinets — = = = = al - - - - - - ‘E
Vi
a2
Bassoons — — = = = Bs - - - - - - {"
1
S
Horns =~ — = — = Hn = = = = = = =
Trumpets = = = = = Tot - - - - - - -
D)}
45 50
Ti i BE -] -] -] -] — —] g]]]]] I —]
impani } ; , ; — T B = ———————————
1 1 i | | o 1
P, e o
Violin 1 = 1 —— e | JoeeE _—~=
- 9 EED A A e B S
\/ ’ v
- i B pu—n —
Violin 2 SS==sses S S===cScSStT S S Se
e - . e ;t;_l--,t — = L=
\/ ’ v
Viola = = = - - - - -
1 .ol e simile
1 . . . -
Cello e ’_‘2@ R e
— | ! o -~

228 EXPERIMENTS IN MUSICAL INTELLIGENCE CONCLUSIONS AND THE FUTURE 229

and fast Mozartean music except for the different types of signa- Figure 7.5 EMI-Mozart Mozart, the beginning of act
tures found in each type of music. Pattern matching the various 2,scene 8.

databases can reveal different kinds of tempo signatures. However,

the resulting signatures could as easily be factors of music choice as =76 mf
they could be a consequence of their different tempi.) ‘,33 — = s

One can imagine future programs treating tempo, dynamics, and —
timbre—as well as articulation and other less notated aspects of
music such as performance practice—as equally important as pitch A ‘
and duration. The methods used here simply stem from the limits of é} e = = e CE-ECEEEE=EsEco e
the original design of EMI. Efforts such as this EMI-Mozart overture, o P g A
although interesting and to some degree meaningful, are simply mp
grafts on an existent structure rather than being conceptually inher- — |
ent in the program itself. oF il ol = = -

Figure 7.5 is from Act 2, Scene 8, of Mozart, a representative exam- 4
ple of the use of text in a machine-composed aria. It demonstrates a 5 mp
mostly syllabic setting around a very diatonic primary-function har-) ,‘ia 5 f s . f
monization, a common trait of real Mozart arias. Measures 18 (begin- H—1 — — s
ning on the fourth beat) and 19 (ending on the third beat) show a
probable signature of Mozart’s vocal style discovered by the previ-
ously described reflexive pattern matcher. Interestingly, this signa- i o s — — ftEEEEE
ture resembles those found in Mozart’s piano sonatas (see figures 3.1 § ¥ EESSSSSSSSSSSEsss=
and 3.20). The pronounced dotted rhythms, lilting sixteenth-note
melismas, and predominance of primary functions all contribute to | |
an eighteenth-century opera style. The switch from accompanied to ai
unaccompanied music seems unnatural and is probably the result of = -
ill-applied ATN. The accompaniment here is a piano reduction of the
orchestral original, which was necessary because of space restric- %:QF; f—a: —— K .
tions. The simple triparte form matches well with Mozart’s own nr - ¥ r— g - »
short aria forms, as does the simple dominant-of-subdominant chro- © bi - shop’sside aganst me in this mat - ter. Did you
maticism (origins of the C natural in measure 18).

Figure 7.6 is from Act 3, Scene 2, of the opera Mozart. Here, the 0 ﬂu] i 1
accompaniment plays a more significant role than in the previous :@v = j j_:j_ e o —_
example because of the various databases chosen for composition.

The dynamics shown here are the result of hybrid pattern matching

@

bt
[

nEEN
1

Q.

Mon trés cher Pére My dearest father I could

au
el
e
e
b

I
3

2

-
1
1

-
A4
A
N

N

e

e

hard - ly have sup-posed it, that youwould take the arch-

e

At
At

,y.
TN
e
oilell
A
el
i

14

| NI
EYs
:1!

o/
Yo

el

. o - | l
the previously mentioned databases. The terracing of dynamics as Do T = 'y ai t al: by
applied by EMI in this example tends to focus the problem inherent in | T ¥ 4
such manipulations: abrupt changes occur when more appropriate 10
settings would require smoother dynamics. In more contemporary . . + N ! — — :]
styles, EMI can extrapolate and recombine dynamics in legitimate (to ; — —f o914 = ;’ =] = = !
. . 0
22;;2;22, ;ag;'ﬂ gfi::;:glslxﬁg??; l;s of dynamic and timbral act thisway be-cause itdid sur-prise you? Was it just too
The performers at the premiere of Mozart took great care to) ,":u ! — — — T ——— s — i —

inform the music with proper classical operatic performance prac-
tice. As such, the trills, the rubato, and (to some extent) the use of

[J
¢
¢
4
¢
4
¢
4

oim

A4
‘ T
A

—NTe

bt

WM
N
Pyl
el
4L

231

CONCLUSIONS AND THE FUTURE

EXPERIMENTS IN MUSICAL INTELLIGENCE

230

Figure 7.6 EMI-Mozart Mozart, act 3,scene 2.

Figure 7.5 continued.

mom T) I
a N m th L 18 L 18
i M H - Y [y
'y 4H ol L 18
Clay & [18 | Ll..} Lnll
o c L | 18 L 11
| YH | TH e ,H_ 'y [y
i _ ol c eleh . Q .
o f V [y Y 'y
| olarnl L I 8 o c ol
3=
Y Y e . 8 Y
A\ N ol 2 o ol T T o]
'\ =
ol 2 —Tom S 4| LI U
[y L] o] o]
[Vl ol o . [y
T 4] bty
il ol ; o5 T) . g (PR .
([}]
ba [18 A m tn
ol N = &4l g i L il TV
X) L1l
N & |[lw A
m hils ol 2 [NH e L 5 i
L 11 1
'y | Y J. I
T L1l
LS e 4
Y 4 Y
) 5] 1 i |
» - . has .
= Qe ol | 1]
0] g
@ L1 L1nl
B | |
0
Rl : {3 >
— | D) o» W[- JArR M ol 2 | L £ A <
253 4 H b by O gl T : = - z
= =4 k.3 e NF e 3 el k=3 2
N <P N NEe NEPe DEre COEl N CIEN oy
e T e
— . -~
) k“ﬂ. 3 2
5 I E 3
.] i A Iel
ll..q.l l.“l u [
: 3 ° L
ned
| et lagd. |
2 o . "
o] 1 1] c s o
; .: N i N
2 3 |
A oe bl | s 5 L |
] 2 | min
m £ M ..7 L 18 *2 il a4
o &] & i
) & 3 5
HH) HH -H —HeH 9 L
o s [2 [Tew® LI < S e
o Hi
)) S i Al 2
I N N £ 1
£ g i o A
o| = - T
et \ , .| m 4 4.
L1 C |
5 am . +
= c
hmw e T oim
o u
E= 1 ¢ 5 .r - N
m m .f add
? c ILIA
T o]
) £ i 1 Ml e .r.fl
Lmﬂ m
..v» \ H v o 1
g -
lnd ...m] nad
T “Te(v I
)
c 1 < et lad. |
1J W e let .N.. 1 e 1 11.q||7
5) g
T 1 el
) 3 n =
o K=l] 1
5 5
el 2 D 2 |4 ! jroy e L1 m 3 TIe[T™
(@]
] R AT 5] il N & =BT ARET
< K O O <M .“+ P IV\Q < v.w = a : o oo
A e S ™

232

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 7.6 continued.

10

/_—\

2 =
o) — . t % t >

of our fa - ther for | could
A A”"u. . 41——’ ‘I\ - P~y 1
== =

D]

Popfrfe _offe,r

®

slurred notes are the result of performer scholarship, not inspired
machine intelligence. Also, the balance of the accompaniment and
vocal parts resulted from many attempts to create an aesthetic
proper to the words of the aria as well as to the surrounding context
of the opera as a whole.

EMI produced five to ten versions of each aria and recitative for
this work. Because the program has no overview of the entire work
or other context in which to create, I made the final choices
between competing versions on the basis of the following criteria:
(1) which followed the style of Mozart best, (2) which served the
needs of the opera best, and (3) which were the most interesting
aesthetically. Being a composer and being interested in creating a
cohesive work rather than simply meeting some abstract stylistic
goal, points 2 and 3 tended to influence my choices most.

Mozart is the result both of my conception, translation, and data-
base selection and of EMI's reflexive and hybrid pattern matching,
ATN, and object-oriented databases. The opera also integrates com-
position and performance practice. As such, while not the only
model of human-machine collaboration, it does represent one logical
form. One can imagine a significantly more interactive collaboration
involving decision sharing on a more detailed level. However, the
performers of the premiere of Mozart have provided audiences with
a benchmark for future work in this area.

Many other researchers have also engaged in the difficult task of
programming computers for musical rather than mechanical perfor-
mance (Anderson and Kuivila 1991; Johnson 1991; Katayose et al.
1990; Widmer 1993). Accompaniment programs, especially those

FI.1

Fl. 2

Cl. 1

Cl.2

Bsn.

Hn. 1

Hn. 2

Tpt.

Harp

Perc. 1

Vin, 1

Vin. 2

Cello

Figure 7.7 @) A portion of the score to the EMI-Cope

CONCLUSIONS AND THE FUTURE

233

Horizons.
n.v. vibr. n.v.
l hed
— — [&] ylao
mp
Ppp n.v. vibr. n.v.
hd - — } : .
oo =
) pp
n.v.
TN e —
[®]
— — = - & 17
A | &
prp -
n.v. vibr. n.v. n.v. vibr. _
N — P Lﬂ,&
= LTy ° = ——
T ~——} |
PPP ———— |mp ———— ppp /m{);;
nomale #e @
-— - - — s
—]] y i
1
ppP<
+
7~
[@] - - - -
mp ——————
— %
i
1 e b el bd
11 =
[]
con sord.
cup mute + o +
™ 25 O I] .. - -
= — i —
| |4
ppp mp :
I I I I } 1 T 1 11
f f —1—1 11— t —f—t—1—1 —
Vibraphone
soft yarn//oo Chimes /" yam
) DY e , : . — :
=== F =2]
L Y I [] [&] L . } < ’y } i
® pedal . nf
Dpp m,
P vibr, Vl
ﬁ 13
= = = = — =
L AY A £
o)v nv. vibr. n.v. oD
A v
- — - - -
) f
N — _/a .
* s mp Vi % ponticello
solo # _R_ o _P_.
VA { -
. = = = ' =

234 EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 7.7 Db) A tfrumpet expanded event.c) A

b.

translation table for some of the events
in this work.

(6500 69 6500 7 12 1 103 1 0)

C.

TABLE :

position:

6

meaning:
enevelope degree mute type

cresc/dim 0-127 0/1 st/cup

m BEYOND MIDI

using neural nets, have usefully accompanied live performances
with appropriate musical nuance and imitative rhythms (Dannen-
berg 1985; Vercoe 1985). Such programs could serve in conjunction
with composition programs to establish more complete machine-
composition performance systems, unlike the collaborative ap-
proach required by Mozart.

MID!I offers an excellent interface between music sequencing soft-
ware programs and connected hardware and software. However, its
limitations are notorious. For example, one cannot communicate
complex timbral effects for instruments such as muting, pizzicato,
harmonics, and so on. Also, it is difficult to describe subtle envelope
characterizations (e.g., “aftertouch”). These techniques require the
user to select appropriate sounds on a synthesizer or sampler and
(possibly) control these timbral aspects on those instruments.
Because I often include very complex scoring details in my own
music and because | wish EMI to use this information for its compo-
sitions in my style, I use a special expanded event form for encoding

CONCLUSIONS AND THE FUTURE 235

my music and then translate the results to standard notation rather
than using MIDL

Figure 7.7a shows five measures of Horizons for chamber orchestra.
This composition was completed by EMI in 1994 and then translated
directly to music notation without the aid of any MIDI devices. Note
the controlled use of vibrato in the strings and the use of various
mutes in the brass as well as the dynamic shaping of the notes. All
these effects were stored in databases and utilized during the compo-
sitional process by employing the expanded event shown in figure
7.7b. This event includes not only the five-part information (start time,
pitch, duration, channel, and dynamic) of a standard EMI event but
also envelope, degree of dynamic change, mute, and type of mute
information. These latter entries are keyed to tables (see figure 7.7¢) of
appropriate data that, in turn, are often keyed to other tables. Be-
cause this expanded information is nonstandard, it could be keyed to
anything (i.e., tables of detailed microtonal information, etc.). Thus,
orchestration can become an integral part of the EMI compositional
approach, and, although often not currently useful as grist for pattern
matching, this additional information can develop important connec-
tivity for the appropriate levels of ATN.

Horizons is a work in three sections that follows the concept that
no decipherable phrase delineation exists beyond the section level.
There is also little perceptible metric feel, as if the music were virtu-
ally without barlines. This effect, almost antithetical to EMI, was
accomplished by (1) using phrases of extended length as databases,
(2) setting the phrase length to match the section length (i.e., a
work length of three phrases), and (3) varying the measure length of
stored measures using a default “mono” classification, thereby
avoiding a metric “feel” and the rhyming quality of metered music.
Because extensive ATN between all sixteen voices and ties often
obliterates the connections between recombined musical segments,
the actual segmentation cannot be discovered except by painstak-
ing comparison between output and the original databases. The bar-
lines here aid performance rather than indicate metric length in
the database. The results of these processes makes Horizons sound
very free in performance. There is no sense of reconstruction or re-
combination. Even at the two internal cadences, the music flows
freely, without interruption.

Using the expanded event descriptions, avoiding MID], and using
the metric blurring described above has produced a work reflective of
what [would call my mature compositional style (unlike, say, Vacuum
Genesis as described in Computers and Musical Style [Cope 1991a], fig-
ures 6.7 and 6.8). Taking advantage of the open architecture of both

EXPERIMENTS IN MUSICAL INTELLIGENCE

the EMI program and the manner in which EMI databases are con-
structed allows for better replications of twentieth-century musical
styles. This is accomplished without detracting from EMI’s ability to
compose music in more classically oriented styles.

m CONCLUSIONS

As with most things computational, algorithmic composition contin-
ues to receive its share of controversy, part of which evolves from
poor output from programs created more for reasons of curiosity
than musical expression. Certainly, computer composition has had
plenty of examples of poor output. Yet, even when the output is inter-
esting, musical, and/or insightful (as is occasionally the case with
EMI), there are still few venues for performance/recording, and there
often is significant controversy. When performances and recordings
do come about, critics seem quick to discredit output with what often
passes as philosophical rationale:

The question is, is it even theoretically possible for a computer pro-
gram, no matter how sophisticated, to produce good Mozart? I claim
that it’s not. The reason is because Mozart—the real Mozart—was a
holistic analog phenomenon, not a reductionist digital phenomenon.
The real Mozart had unconscious drives, turbulent flashes of emotion,
and a sly sense of humor. (Aikin 1993, p. 25)

I am the first to concede that, on one level at least, machines will
never replicate works on the aesthetic level of those that we have
come to appreciate as masterworks. This is understandable, as
those works were composed by humans for humans; and we know
this to be true. We also know that this is not true in the case of
machine composition, and that fact alone prohibits many from
believing that machine composition can achieve an equal footing.
On this level, regardless of how good a replication is, it cannot, a pri-
ori, be as good as the great works of tradition.

On a deeper level, however, such concessions provide few
insights and may even confuse our real sensibilities. As [stated ear-
lier in this book, computers do not compose, they perform pro-
grams. These programs are written by humans. Whatever intelli-
gence EMI possesses, whatever abilities it has to compose and
analyze, it has only because of my labors. Critics seem somehow
oblivious to this by virtue of the intervening hardware. Let us be
clear: computers add and subtract, and criticisms of algorithmic

CONCLUSIONS AND THE FUTURE 237

and computational composition are criticisms of the human pro-
grammers of those machines and not the machines themselves.

Yet, authorship of machine-created compositions is complicated
and nontrivial to many:

Who is the composer of a Bach-like invention produced by EMI? Obvi-
ously this is not exactly the work of Bach nor entirely of the computer
nor especially of Cope. There is some essence of Bach that is perhaps
equivalent to the essence of orange in orange-blossom honey—very
pervasive but not always clearly discernible. The honey does not look
or taste very much like an orange, but it looks and tastes even less like
a bee, and we are happy enough to consider it an entity of its own kind.
Although computer processing produces an EMI work, the result is
hardly the consequence of a purely mechanical process, since it re-
quires data segmented by Cope and algorithms devised and adapted
to a particular task by him. (Selfridge-Field 1992, p. 543)

Authorship of a Musikalisches Wiirfelspiel (discussed in chapter 1)
seems clear. Composers who deliberately write disconnected mea-
sures of music for the express purpose of having them selected
according to some quasi-random process and then reconnected in
numerous different ways are still the composers of all the resulting
works no matter how staggering their number happens to be. This is
also true of any EMI output that I perpetrate on my own music, as in
the case of Vacuum Genesis (see Cope 1991) and Horizons (see figure
7.7). But this is not so clearly the case with the EMI-Bach, -Mozart,
-Rachmaninoff, -Beethoven, -Schumann, and so on found in this vol-
ume. This music was forged from music not intended to be a
Musikalisches Wiirfelspiel by a program | devised for this purpose.
The original composers of the works used by the program are not
the composers of these new works. | am not the composer of these
works, at least not directly. To many, the ultimate responsibility lies
with EM], the entity that places this new music once removed from
either the composers of the music or the creator of the program. In
the final analysis, however, | am the one responsible for EMI, respon-
sible for the database input into EMI, and responsible for the aes-
thetic selection of works from EMI's output. The operational word
here, “responsible” (not “composer of”), represents a distinction
that, although subtle, portrays the actuality.

To someone in the position of having spent over twenty percent
of his life devoted to the enterprise of writing code for, and words
about, algorithmic composition, I find such discussions curious.
There is an almost nonchalant manner in which EMI is considered
an entity unto itself—capable of being challenged as a machine
entity. In the final analysis, however, as | mentioned in chapter 1,

238

EXPERIMENTS IN MUSICAL INTELLIGENCE

computers are not our rivals but our slaves. EMI acts as a “tool” in
much the same manner that an instrument does during musical
improvisation. Furthermore, many computer programs (such as EMI
and SARA) use human-composed data as an integral part of their
composing processes.

Beyond the fact that I created the EMI program, my own aesthet-
ics are very much a factor in the choices of EMI output used in pub-
lication and recording. In many ways, it seems no less creative for
expression to assert itself through this art of selection than through
the art of creation. In fact, I think that choosing well is in many ways
as hard as composing well, although clearly the number of decisions
one must make compositionally far exceed decisions of selectivity.
At the same time, winnowing out potentially great works from the
thousands that can be almost instantly created by a computer pro-
gram can be an incredibly difficult process.

Interestingly, when the output from a computer program is
deemed good—so good that even informed critics acknowledge it—
credit is often given to performers rather than the programmer.
Although it is true that a good performance can greatly enhance the
perceived quality of a work, especially when combined with the
appropriate performance practice, good performances cannot save
weak or unmusical works. Music is great because the proportions of
that music match those proportions we deem artistically genuine.
Whether those proportions exist because a human or a machine cre-
ated or performed them is irrelevant.

There are some that argue that creating new music in a given
composer’s style, whether by computer or by human hand, tends
to cheapen the value of the original music. This argument is
strengthened if such imitations are very good and even more so if
the imitations are numerous and popular. [would argue that such
imitating often takes place anyway in film scores, popular music,
commercials, and so on. In fact, no sooner does a unique work or
style appear than it is copied and revised ad nauseam. As can be
seen from chapter 1, and from even a cursory study of Mozart'’s
era, Mozart’s style was itself a copy of many styles and was then
further copied by hundreds of would-be Mozarts. His music has
survived these masquerades, and it will most certainly survive
the music created by machine programs. Likewise, I think that the
world cannot have too much good Mozart (real or digital) and
hope that many other dead composers could be so resurrected.

I presented one such tangible example of such a resurrection in
chapter 5 (pp. 176-182) of Computers and Musical Style (Cope 1991a):
an EMI movement in the style of Prokofiev. This engaging work so

CONCLUSIONS AND THE FUTURE 239

impressed me that I have since orchestrated it for chamber orchestra
and made a version for two pianos. Interestingly, it is but one move-
ment of three (the second) completed in 1989 and possibly the least
interesting of them in terms of compositional process. The first
movement of that sonata, the instigator for creating the Prokofiev
database in the first place, is based on the first forty-four measures of
Prokofiev’s unfinished tenth sonata, which are its initial music in clar-
ified form. Figure 7.8 gives the first seventy-three measures of this
work. Completing unfinished works by dead composers is a feat pre-
viously accorded only to humans (Mahler’s and Beethoven’s tenth
symphonies are particularly notable examples). Computer programs
may now offer extraordinary new potential for such completions.

After initially harmonizing the last few bars of the original
Prokofiev (figure 7.8, mm. 1-44), the program repeats the first halves
of measures 15 to 17 a major second up in measures 48 to 50 in aug-
mented rhythm. This simple variation surpasses basic recombi-
nancy by collecting a subsection of the original music for develop-
ment. This is similar to what the program would do if the original
music had been its own creation. Without commenting blow by blow
on the succeeding material, it should be apparent that the measures
extending the original Prokofiev are all based on it as a skeletal
structure instead of depending on multiple databases from other of
Prokofiev’s works. Not that those other databases were not present
during machine composition, for they were; rather Prokofiev had
involuntarily supplied enough of the new work as to make total
dependency unnecessary.

From a humanistic perspective (the perspective most critics of EMI
claim they adhere to), one can hardly imagine both musicians and
nonmusicians not being at least curious as to how EMI's imaginings of
Prokofiev’s completion of this movement would sound. Indeed, it
could be useful and thought provoking to create a multitude of such
possible extensions and compare them with other of Prokofiev’s
sonatas. At the least, these posthumous projections could provide
imaginative appellations for the curious. For many, they might also
provide a most sought-after continuation of a Prokofiev legacy, a new
work in his style. :

EMI and SARA have, in the decade or more since their inception,
created hundreds (even thousands in one particular case that will be
discussed later in this chapter) of new works in various styles. Beyond
the arguments of human versus machine composition, the conse-
quence of such creation seems immediately valuable: it facilitates
research into areas such as musical style and pattern recognition and
enhances the potential for composer-computer collaborations:

240 EXPERIMENTS IN MUSICAL INTELLIGENCE CONCLUSIONS AND THE FUTURE 241

Figure 7.8 The beginning of the first movement of Figure 7.8 continued.
EMI-Prokofiev Sonata 10.

'
f?k
By
)
D

3

0 . | P2
Allegro moderato g 5 prm— —— I 8 n; }——6 i :
A i 5!;1 é’ I —~ m t ’ T T T
E | T 0 Py | | T ‘ﬁ_—?—% - 2. ‘ ? q b-& 14 1 T b%
X ﬂ: C L i ;dl_.‘l_’_i' ‘ll y : 1 T : T -
* , T dvve ° e ke
-' — d—
Q g } l” 4 — 1 g; = = = =
BESSS oo . —————== SEr = — === =
T S e = e = v .
S —————————
- } Y . "1 -- T 1 9 P -’:20. Y A’ Y b-.- I'.. t‘ -5 -,-\
==sl= — o =====t=—2==="==—Cu ;
g b [— = ¥
bt .

\
| |
—s

- —r et L 40 | L

(8Va)— — - —
10
D i o
— et = —_——

;
E
:

o
(\ﬂ
G

(

il
(
oy

4l

¢4

(

4!
(G
(.
CYINE
NTE
M
(3
_
G
(

242 EXPERIMENTS IN MUSICAL INTELLIGENCE
CONCLUSIONS AND THE FUTURE 243

Figure 7.8 continued.
Many may find that they do not fully agree with the implications of such

work: why have a computer attempt something that we can already do

50 much better by ourselves? The answer is that in doing so we discover

i 7 —— more about music as a system of the human intellect. (Casey 1993, pp.
1054-55)

R
Computers have allowed us to make enormous strides in the

1
[108

1
b
g

[10
[T

il
“

Il
/!
4
]l
¢/

z understanding of musical signatures that lead to yet deeper under-

% %%ﬁ standing of musical style. Signatures can differentiate styles and

e g can, for example, identify characteristics of baroque versus classical

styles, of German baroque versus Italian baroque, of individual Ger-

man baroque composers, of Bach versus Handel, and even of early
Bach from late Bach.

Such differentiation need not replace broader definitions of style,
but it can augment them. It is unproductive to rely solely on general-
izations of musical style, as do most analytic approaches, rather
| | | | ; 1 b than developing strategies for describing specific examples of the

I signatures that in part define these styles. After all, defining common-
practice music merely as a body of chord protocols and general
voice-leading rules provides little insight into this music. Further-
more, computer composing programs using such definitions pro-
0] r——— i 60 duce little more than correct realizations of those -chord protocols

—

4
vl
]
!
il
©
\
\I
%

— and rules: neither good music nor musically good realizations. It is,
[,F Hﬁ‘ after all, the exceptions to these chord protocols and rules that

:;E;
il
O |
d

often provide insight into the styles of individual composers.
Recombinant processes inherit such exceptions, whereas general-

hd —
=t T~ ~— | —
%q —o— ,ﬁf = ——— g ¢ ized rules prevent them from occurring:
- :

ol

It cannot be assumed that the mechanical extraction of information
such as the frequency of specific notes, phrases, harmonic progressions

or thythms will provide instant clues as to the natures of the creative
g processes which led to their generation. Whereas there can be little

SRR TN ST S i
T #‘:ﬂ = ,L'E} i t i i doubt that such repetitive processes of feature extraction can be exe-
) h b-e f ! .

cuted accurately and at high speed by a computer, this justifies neither
the method nor the value of the results. (Manning 1993, p. 132)

oy 1 !’IF —t—o— ,*t:: ~ L..".\] h : __ At the same time, devising and refining programs that attempt
= — - e —— — — i — replications of diverse musical styles leads one to many useful
24 {]Et'v - & insights about why, for example, such compositions differ in style,

how relatively important the constituent elements that comprise

. 70 them are, and how complex the temporal and musical mind is that

: & : } | . | appreciates them. Music theories and, for that matter, the theories of

P 7 ; % - 5 - :$ — . — any art form need to rely on processes such as those exemplified in
e EML. For, as in the sciences, if one cannot prove that a process works

(with replication as one such proof), then that process remains in
™~ , — theory only and unproved theories, no matter how eloquent, have
N

: — 1 = y 5
— ==iSssS E=ESS
=

244 EXPERIMENTS IN MUSICAL INTELLIGENCE

m THE FUTURE

little value. Music theories can benefit from nonspeculative substan-
tiation through computer re-creation, and for some this may be the
only realistic way to reveal true substance.

Turn it on and a concert of original music begins—music never heard
before! A series of classical pieces are composed even as they are being
played! Fugues, dance suites, chorales and concerti are composed and
played on a host of instruments including piano, harpsichord and flute.
No two compositions are ever the same, giving the listener an enjoyable
infinite musical experience. (CPU Bach 1993, p. 1)

So goes the patter of one current ad for our future music: this an ad
for a joystick television CD-ROM player from Panasonic. The advertis-
ers would have us believe that composition is a sleight of hand, a flip
of the switch—that the makings of great compositions lie within the
grasp of complete novices. One must wonder about the possibilities.

Certainly, no truly inquiring mind can ignore the potential of the
digital medium and the staggering potential for computer creativity.
It is difficult to imagine, as algorithmic processes become more
sophisticated, that our best creative minds will not be drawn to
their possibilities, if not for inspiration or craft then at least for the
curiosity of their output: “There has never been so powerful an
instructor or decision-making tool for helping you determine which
methods have promise and which do not” (Jaxitron 1985, p. 2).

Previous to the computer era, composers faced the same kind of
blank canvases as painters do. In the future, however, composers
may find themselves more like sculptors, already having malleable
machine-composed foils to wrestle with as they begin. Whether
composers will then be seduced into programming or not will de-
pend on the level of their desire to understand the processes they
use. The output of their programs will rely exclusively on the quality
of both the programmer and the resultant musical compositions
that the programmer’s program produces and not, as previously dis-
cussed, on any magic, of lack of it, in the machine.

With just such thoughts in mind, I created a program that com-
posed 5,000 works during the first few months of 1992. These
included 2,000 multimovement piano sonatas, 1,500 symphonies,
1,000 string quartets, and 500 assorted preludes and inventions for
various solo instruments. The reason for creating this program was to

CONCLUSIONS AND THE FUTURE 245

enhance my opportunities to examine style formation as well as to
provide works that I could “sculpt” as I desired. Under these circum-
stances, one can observe how style changes over time, how it
becomes codified, and what kinds of anomalies create significant styl-
istic changes. This program uses databases constructed of chorale-
like homophony from three of Stravinsky’s works: the third piece of
the Three Pieces for String Quartet of 1913, a homorhythmic chorale
section from the 1947 version of the Symphony of Wind Instruments,
and the final chorale passage from the Symphony in C of 1940. The
style of these passages consists of repeated chords varied in dura-
tion, texture, and metric placement. I chose these passages because
they have served to inspire my own work yet seem separate enough
from it to allow objective perception of style and style development.

This program initially creates a small body of music and analyzes
that music for basic chord types, protocols, voice leading, ATN, and
so on. The program pattern matches the newly created works for sig-
natures and places them in dictionaries for further generations of
music. The program then creates another body of works that “gently”
incorporates its analysis of past works. This “gentle incorporation”
means that rules are not applied strictly but only when the opportu-
nity exists. These signatures and the previously mentioned analysis
are saved for study and comparison with other such data saved in
chronological order. The program then creates new bodies of works,
uses them in turn as databases, and incorporates ever increasing
robustness in its application of signatures and analysis as constraints
until they become the norm. Anomalies occur only when a constraint
cannot be followed, in which case a previous, less stringent version of
that constraint is applied until some earlier version applies success-
fully. This process follows basic inductance procedures that are simi-
lar to those used in many current machine-learning knowledge engi-
neering programs.

Several techniques give the music variety. For example, three
types of scales were allowed to exist between various notes in each
voice. These included chromatic, octatonic, and whole tone—the
three found most often in the analyzed Stravinsky and my own
work. The number of voices present at any given time was random
but generally consistent by phrase. A certain element of octaviza-
tion (projecting a voice upward or downward by one octave) was
also present to introduce various inversions for variety. Also,
melody and voice leading followed principally stepwise motion.

The results have proven to be interesting and consistent. Figure 7.9
gives an example of the beginning of one of these works: Sonata 293.
Here, the influence of the simple chorale-like database is pronounced,

246 EXPERIMENTS IN MUSICAL INTELLIGENCE CONCLUSIONS AND THE FUTURE 247

and the harmonies show very little sign of development beyond that Figure 7.9 The beginning of EMI Sonata 293.
present in the music from which it was drawn. However, figure 7.10, the

beginning of a composition over a thousand works deeper into the out- J=72

put, shows an almost stagnant harmonic rhythm with melodic out- —3— | -
bursts in octaves. Figure 7.11, a composition almost two thousand e e ' — k .L‘ z
works later in the sequence (with numerous intervening preludes, quar- : —LG—J E& Z
tets, and symphonies), has evidence of both the music of figures 7.9 and ppp sempre
7.10 yet a style that is different than either of these preceding works. I .
was personally so taken with these three randomly chosen examples m e i 2_&; ',: b =
that I included the works in a slightly varied form in my Well-Tempered i ¥ T i
Disklavier collection of forty-eight preludes and fugues (1992-94). 3

Creativity of this magnitude is not new, particularly to other arts 10
than music. For example, Raymond Queneau of the collaborative | | |
group of writers known as Oulipo, created the book One Hundred Mil- Hr—
lion Million Poems (Queneau 1983), which, as its title suggests, allows)
for the composition of a great number of poems not unlike the works
of music created by Musikalisches Wiirfelspiel (see chapter 1).

In the first and last chapters of Computers and Musical Style (Cope
1991a), I waxed eloquently, or so I thought, about an EMI workstation. 1
The code presented with this book does not compose on such a
workstation, nor does one yet exist. The dream continues of a digital
extension of myself that provides music from which I can extract at Figure 7.10 The beginning of EMI Sonata 1755.
will. This music would be in my style and of the nature of my current
work. The creation of The Morning of the World (Cope 1991, figure
6.12) represented a tactile beginning as Horizons represents a major
step forward. I hope that the future holds many new compositions,
yet unimagined, in which my work will be so jointly procreated that it
will be difficult for anyone, least of all myself, to know which part was
created by which entity. This is one view of the future: composers
irreducibly joined with the tools of technology.

The previously mentioned posthumous completions of works by
computer suggest that composers’ creativity might extend beyond
their lives and that such composers might even program their own
databases before their death specifically for posthumous composing.
Imagining that composers of our future could sculpt databases in-
stead of individual works is not as far-fetched as one might think.
None of this needs to be to the detriment of humanness. In fact,
when that humanness fully expands into the extraordinary capabili-
ties of those very tools that humans have created, then we will truly
begin to achieve our full potential.

Hans Morovec believes that

oy~
8E
aleli
PR
=]
Nt
q_‘w_.¢

alall

]
1:1

T

_....w....¢

we are in the process of creating a new kind of life. Though utterly novel,
this new life form resembles us more than it resembles anything else in

248

EXPERIMENTS IN MUSICAL INTELLIGENCE

Figure 7.11

The beginning of EMI Sonata 3392,

the world. To earn their keep in society, robots are being taught our
skills. In the future, as they work among us on an increasingly equal foot-
ing, they will acquire our values and goals as well—robot software that
causes antisocial behavior, for instance, would soon cease being manu-
factured. How should we feel about beings that we bring into the world,
that are similar to ourselves, that we teach our way of life, that will prob-
ably inherit the world when we are gone? I consider them our Children.
(Morovec 1992, pp. 51-58)

Let us hope that these children inherit our musical and expressive
sensibilities. For, as much as 1 embrace machine extensions of hu-
man endeavor, I cannot imagine a meaningful exchange between Mo-
zart, be it the real analog Mozart or a digital reductionist phenome-
non, and a robotic ear. Clearly, however, computers will play an
ever increasing role in our future music. Computers will affect every
aspect of how we compose, work, and live. There is no question
that new algorithmic worlds await both us and our children, robot
or not, and that these worlds will reveal startling new music.

I began this book with a discussion of early experiments with
musical combinatoriality from the seventeenth and eighteenth cen-
turies. These early experiments often took the form of diversions or
games (Musikalisches Wiirfelspiel), and few have taken this work
seriously since. It is certainly possible that my own research into

CONCLUSIONS AND THE FUTURE 249

twentieth-century recombinancy falls into a similar, soon to be
ignored, experiment. However, it is important to note that Charles
Babbage’s calculating machine remained a novelty for many decades
until a few engineers took it seriously and created our present-
day computers. Maybe algorithmic composition and recombinancy
will enjoy just such a rediscovery as we prepare for the music of the
twenty-first century.

AN

Bibliography

Aikin, Jim. 1993. “Ghost in the Machine.” Keyboard 19, no. 9 (September):
25-28.

Ames, Charles. 1987. “Automated Composition in Retrospect: 1956-1986."
Leonardo: Journal of the International Society for Science, Technology and
the Arts 20, no. 2: 219-50.

Anderson, David P., and Ron Kuivila. 1991. “Formula: A Programming Lan-
guage for Expressive Computer Music.” Computer 24, no. 7 (July): 12-21.

Bach, Carl Philipp Emmanuel. 1757. “Einfall einen doppelten Contrapunct in
der Octave von sechs Tacten zu machen ohne die Regeln davon zu wis-
sen.” In Historisch-Kritische Beytrige Aufnahme der Musik, vol. 3, pt. 1, ed.
Friedrich Wilhelm Marpurg. Berlin.

Barlow, Harold, and Sam Morgenstern. 1948. A Dictionary of Musical
Themes. New York: Crown Publishers.

Bates, Madeleine. 1978. “The Theory and Practice of ATN Grammars.” In
Natural Language Communication with Computers, ed. Leonard Bolc, pp.
191-259. Berlin: Springer-Verlag.

Bezdek, James C. 1981. Pattern Recognition with Fuzzy Objective Function
Algorithms. New York: Plenum Press.

Bobrow, D. G., et al. 1988. The Common Lisp Object System Specification.
Technical Document 88-002R of X3j13 (June).

Buxton, William. 1978. Design Issues in the Foundation of a Computer-Based
Tool for Music Composition. Toronto: Computer Systems Research
Group.

Callegari, Antonio. 1802. L'Art de Composer de la Musique sans en Connaitre
les Elémens. Paris.

251

252

EXPERIMENTS IN MUSICAL INTELLIGENCE

Casey, Michael. 1993. Review of Computers and Musical Style, by Davi
Notes 49: 1053-55. tyle, by David Cope.

Ch(;msky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge: MIT
ress.

Christaller, Thomas, and Dieter Metzing, eds. 1979. Augmented Transition
Network—Grammatiken. Berlin: Einhorn Verlag.

Co;e, Edward. 1968. Musical Form and Musical Performance. New York: W. W.
orton.

Corl.;ke, Deryck. 1959. The Language of Music. New York: Oxford University
ress.

Cope, David. 1977. New Music Composition. New York: Schirmer Books.

— 1987. “An Expert System for Computer-Assisted Music Composi-
tion.” Computer Music Journal 11, no. 4: 30—46.

- 1988. “Music and LISP.” Al Expert 3, no. 3 (March): 26-34.

. 1”990. “Patterp Matching as an Engine for the Simulation of Musical
Style.” In Proceedings of the International Computer Music Conference, pp.
288-91. San Francisco: Computer Music Association.

——— 1991a. Computers and Musical Style. Madison, Wisc.: A-R Editions.
—— 1991b. “Recombinant Music.” Computer 24, no. 7 (July): 22-28,.

. 19?2a. “Algorithmic Composition [re]Defined.” In Proceedings of the
International Computer Music Conference, pp. 23-25. San Francisco: Com-
puter Music Association.

. 1992b. “Computer Modeling of Musical Intelligence in EML.” Com-
puter Music Journal 16, no. 2: 69-83.

CPU Bach. 1993. Hunt Valley, Md.: Music Prose Software, Inc.

Dam.ienber”g, Roger B. 1985. “An On-Line Algorithm for Real-Time Accompa-
niment.” In Proceedings of the 1984 International Computer Music Confer-

ence, pp. 193-98. San Francisco: International Computer Music Associa-
tion.

Delange, Herman-Francois. N.d. Le Toton Harmonique on Nouveau Jeu de Ha-
zard. Liége.

Duisberg, Robert. 1993. “1992 International Computer Music Conference,
San Jose, California, 14-18 October 1992: General Remarks.” Compuyter
Music Journal 17, no. 2: 86-87.

Feil, fl\rnold. ?955. Satztechnische Fragen in den Kompositionslehren von F. E.
Niedt, J. Riepel und H. Chr. Koch. Heidelberg: Gehrer & Grosch.

Forte, Allen. 1955. Contemporary Tone Structures. New York: Columbia Uni-
versity Teachers College.

Fry, C. 1984. “Flavors Band: A Language for Specifying Musical Style.” Com-
puter Music Journal 8, no. 4: 2-34.

BIBLLOGRAPHY 253

Gabriel, Richard, Jon L. White, and Daniel G. Bobrow. 1991. “CLOS: Integrat-
ing Object-Oriented and Functional Programming.” Communications of
the ACM 34, no. 9 (September): 29-38.

Galeazzi, Francesco. 1791-96. Elementi teorico-pratici di musica. Rome.

Gazdar, Gerald, and Chris Mellish. 1989. Natural Language Processing in LISP:
An Introduction to Computational Linguistics. Menlo Park, Calif.: Addison-
Wesley.

Haydn, Joseph. 1793. Gioco Filarmonico, o sia maniera facile per comporre
un infinito numero di minuettie trio anche senza sapere il contrapunto.
Naples.

Helm, E. Eugene. 1966. “Six Random Measures of C. P. E. Bach.” Journal of
Music Theory 10: 138-51.

Hiller, Lejaren. 1970. “Music Composed with Computers: A Historical Sur-
vey.” In The Computer and Music, ed. H. Lincoln. Ithaca, N.Y.: Cornell Uni-
versity Press.

. and Leonard Isaacson. 1959. Experimental Music. New York: McGraw-
Hill.

Hindemith, Paul. 1939. The Craft of Musical Composition. London: Schott.

Hoegi, Piere. 1770. A Tabular System Whereby the Art of Composing Minuets Is
made so Easy that any Person, without the least knowledge of Musick, may
compose ten thousand, all different, and in the most Pleasing and Correct
Manner. London.

Huron, David. 1993. “The Humdrum Toolkit: Research Software for Music
Scholars.” Paper read at the joint meeting of the American Musicological
Society and the Society for Music Theory, Montréal, November.

Iverson, Eric, and Roger Hartley. 1990. “Metabolizing Music.” In Proceedings
of the 1990 International Computer Music Conference, pp. 298-301. San
Francisco: International Computer Music Association.

Janzen, Thomas. 1992. “Algorhythms: Real-Time Algorithmic Composition
for a Microcomputer.” In Computer-Generated Music, ed. Denis Baggi, pp.

199-209. Los Alamitos, Calif.: IEEE Computer Society Press.

Jaxitron. 1985. Cybernetic Music. Blue Ridge Summit, Pa.: TAB Books, Inc.

Johnson, Margaret L. 1991. “Toward an Expert System for Expressive Musi-
cal Performance.” Computer 24, no. 7 (July): 30-34.

Katayose, H., T. Fukuoka, K. Takami, and S. Inokuchi. 1990. “Expression Extrac-
tion in Virtuoso Music Performances.” In Proceedings of the 10th Interna-
tional Conference on Pattern Recognition, pp. 780-84. Atlantic City, N.J.

Keene, Sonya. 1989. Object-Oriented Programming in COMMON LISP: A Pro-
grammer’s Guide to CLOS. New York: Addison-Wesley.

Kircher, Athanasius. 1650. Musurgia Universalis. Rome. Reprint, New York:
Georg Olms.

254

EXPERIMENTS IN MUSICAL INTELLIGENCE

Kirnberger, Johann Philipp. 1757. Der allezeit fertige Polonoisen- und Menuet-
tenkomponist. Berlin.

. 1783. Methode Sonaten aus’'m Ermel zu schiiddeln. Berlin.

Koch, Heinrich Christoph. 1782-93. Versuch einer Anleitung zur Composition.
Rudolstadt and Leipzig.

Krasner, Glenn. 1980. “Machine Tongues VIII: The Design of a Smalltalk
Music System.” Computer Music Journal 4, no. 4: 4-14.

Lawless, Jo A., and Molly M. Miller. 1991. Understanding CLOS: The COMMON
LISP Object System. Bedford, Mass.: Digital Press.

Lester, Joel. 1992. Compositional Theory in the Eighteenth Century. Cam-
bridge: Harvard University Press.

Lidov, David, and A. James Gabura. 1973. “A Melody Writing Algorithm
Using a Formal Language Model.” Computer Studies in the Humanities and
Verbal Behavior 4: 138-48.

Mahling, A. 1991. “How to Feed Musical Gestures into Compositions.” In Pro-
ceedings of the 1991 International Computer Music Conference. San Fran-
cisco: International Computer Music Association.

Manning, Peter. 1993. Review of Computers and Musical Style, by David Cope.
Music and Letters 74: 132-34.

Meyer, Leonard. 1956. Emotion and Meaning in Music. Chicago: University of
Chicago Press.

. 1989. Style and Music. Philadelphia: University of Pennsylvania
Press.

Morovec, Hans. 1992. “Letter from Moravec to Penrose.” In Thinking Robots,
an Aware Internet, and Cyberpunk Librarians, ed. R. Bruce Miller and Mil-
ton T. Wol. Chicago: Library and Information Technology Association.

Mozart, Wolfgang Amadeus. 1793. Anleitung zum Componiren von Walzern so
viele man will vermittlest zweier Wiirfel ohne etwas von der Musik oder
Composition zu verstehen. Berlin.

. 1793. Musikalisches Wiirfelspiel. N.p. Reprint, Brighton, Mass.:
Carousel Publishing Corporation, 1973.

Newman, William S. 1961. “Kirnberger’s Method for Tossing Off Sonatas.”
Musical Quarterly 47: 517-25.

Plantinga, Leon. 1977. Clementi, His Life and Music. London: Oxford Univer-
sity Press.

Pope, Stephen Travis. 1991. “Introduction to MODE: The Musical Object
Development Environment.” In The Well-Tempered Object: Musical Appli-
cations of Object-Oriented Software Technology, ed. Stephen Travis Pope,
pp. 83-106. Cambridge: MIT Press.

BIBLIOGRAPHY 255

Printz, Wolfgang Caspar. 1696. Phrynis Mytilenaeus oder der Satyrischer Com-
ponist. Dresden.

Queneau, Raymond. 1983. One Hundred Million Million Poems. Translated by
John Crombie. Paris: Kickshaws.

Rameau, Jean-Philippe. 1722. Traité de 'harmonie. Paris. Translated by Philip
Gossett. New York: Dover, 1971.

Ratner, Leonard. 1970. “Ars Combinatoria Chance and Choice in Eighteenth-
Century Music.” In Studies in Eighteenth Century Music Essays Presented to
Karl Geiringer on the Occasion of his 70th Birthday, ed. H. C. Robbins Lan-
don. New York: Oxford University Press.

Ricci, Pasquale. N.d. Au plus Heureaux jeux Harmoniques pour Composer des
Minuets ou des Contredances au sort d’un dex. N.p.

Riepel, Joseph. 1755. Grundregeln zur Tonordunung insgemein. Frankfurt.
. 1757. Griindliche Erkldrung der Tonordnung insbesondere. Frankfurt.

Roads, Curtis. 1984. “An Overview of Music Representations.” In Musical
Grammars and Computer Analysis, ed. M. Baroni and L. Callegari, pp.
7-317. Florence: Musicologia A Cura Della Societa Italiana de Musicologia.

Rodet, Xavier, and Pierre Cointe. 1984. “FORMES: Composition and Schedul-
ing of Processes.” Computer Music Journal 8, no. 3: 32-50.

Rowe, Robert. 1993. Interactive Music Systems: Machine Listening and Com-
posing. Cambridge: MIT Press.

Schenker, Heinrich. 1935. Der freie Satz (Free Composition). Vienna: Univer-
sal Edition. Translated and edited by Ernest Oster. New York: Longman,
1979.

Selfridge-Field, Eleanor. 1992. Review of Computers and Musical Style, by
David Cope. Journal of the American Musicological Society 45: 535-45.

Simon, Herbert, and Kenneth Kotovsky. 1963. “Human Acquisition of Con-
cepts for Sequential Patterns.” Psychological Review 70: 534-46.

, and Richard K. Sumner. 1968. “Pattern in Music.” In Formal Represen-
tation of Human Judgment, ed. B. Kleinmuntz, pp. 219-50. New York: John
Wiley and Sons.

Slawson, Wayne. 1985. Sound Color. Berkeley: University of California
Press.

Stadler, Maximilian. 1780. Table Pour Composer des Menuets et des Trios a
Uinfinie; avec deux Dez a Jouer. Paris.

Steele, Guy. 1990. Common LISP: The Language. Bedford, Mass.: Digital Press.

Taubert, Karl Heinz. 1988. Das Menuett. Ziirich: Verlag Musikhaus Pan AG.
Originally published in Paris, 1786.

256

EXPERIMENTS IN MUSICAL INTELLIGENCE

Vercoe, Barry. 1985. “The Synthetic Performer in the Context of Live Perfor-
mance.” In Proceedings of the 1984 International Computer Music Conference,
pp. 199-200. San Francisco: International Computer Music Association.

Watson, Mark. 1991. Common LISP Modules: Artificial Intelligence in the Era
of Neural Networks and Chaos Theory. Berlin: Springer-Verlag.

Webster, Noah. 1828. An American Dictionary of the English Language. New
York: S. Converse.

Weizenbaum, Joseph. 1966. “ELIZA—-a Computer Program for the Study of
Natural Language Communication between Man and Machine.” Communi-
cations of the ACM 9: 36-45.

Widmer, Gerhard. 1993. “Understanding and Learning Musical Expression.”
In Proceedings of the 1993 International Computer Music Conference, pp.
268-75. San Francisco: International Computer Music Association.

Winograd, Terry. 1968. “Linguistics and the Computer Analysis of Tonal Har-
mony.” Journal of Music Theory 12: 2—49.

. 1972, Understanding Natural Language. New York: Academic Press.

Winsor, Phil. 1987. Computer-Assisted Music Composition. Princeton, N.J.:
Petrocelli Books.

Woods, William. 1970. “Transition Network Grammars for Natural Language
Analysis.” Communications of the ACM 13: 591-606.

Xenakis, lannis. 1971. Formalized Music. Bloomington: Indiana University
Press.

A

about-window, 139
:accessor keyword. See
keywords
add-the-matches. See SARA
functions
after-methods, 139
Aikin, Jim, 236
Alberti bass, 37, 46, 55, 134
algorithmic composing programs,
23, 236-37
Compass, 36
Cypher, 35-36
EMI, 25-27, 36
Metamuse, 36
SARA, 25-26, 36
allowance. See EMI variables
Ames, Charles, 23
American Association for Artificial
Intelligence (AAAI), 82
amount—of f. See SARA
variables
analysis-lexicon. See SARA
variables
analysis, 136
analysis slot.See measure
object slots
analyze. See SARA functions
Anderson, David P, 25, 232
antecedent, 30. See also SPEAC
around-methods, 139
ars combinatoria,1-2. See also
Musikalisches Wiirfelspiel
ATN. See augmented transition
networks
augmented transition networks
(ATN), 40-48, 151-87
accompaniments and, 31, 55, 76,
134, 184, 210, 228, 232
defined, 40, 45
harmony and, 46, 48, 73, 175, 210
pattern matching and, 26, 136,
151, 168, 189, 191, 197,
218-20, 245
signatures and, 26, 40, 46, 48,
109, 151, 168, 175, 187, 224,
245

Index

voice-leading and, 48, 166-69,
177, 245
autocatalytic theory, 36
automated music, 23

B
Babbage, Charles, 123-24, 249
Bach,C.P.E., 26
Einfall einen doppelten Contra-
punct in der Octave von sechs
Tacten zu machen ohne die
Regeln davon zu wissen, 3-7
Musikalisches Wiirfelspiel and, ix
Bach, J.S., 12, 14, 243
analysis of the musical style of,
166-70
Cantata no. 67, 18
Chorale no. 40, 16667
Chorale no. 140, 173, 176
Chorale no. 241, 176
chorale style and, 166-69, 171,
174,177
Invention No. 5 (BWV 776), 144,
147, 148
Invention No. 15 (BWV 786), 144,
147
inventions in the style of, 25,
48-52, 144
St. Mathew Passion, 18
background, 66, 67, 69. See also
Schenker, Heinrich
Barlow, Harold, 12
Bartok, Béla, 67
Fourth String Quartet, 67
Bates, Madeleine, 151
Beethoven, Ludwig van, 239
motives of, 201, 209
Andante favori, 210
Piano Sonata, op. 2, no. 1, 16,
20-21, 204, 207, 209, 212
Piano Sonata, op. 2, no. 3, 20-21,
210
Piano Sonata, op. 10, no. 2,
20-21
Piano Sonata, op. 13 (Pathé-
tique), 14, 15, 19, 20, 22, 201,
204, 205, 207, 212

Piano Sonata op. 53 (Waldstein),
209
Piano Sonata op. 57 (Appassio-
nata), 201, 205
Sonata, op. 7, 212
Symphony no. 5, 86-88
before-methods, 139
Bezdek, James C., 33, 34
Bobrow, Daniel G., 124, 130
Brulé, 17, Cil qui d’Amors, 17
Buxton, William, 23
Byrd, William, 18
O Lord my God, 18

C

cadence-lexicon, 137, 140
cadence lexicon slots
full-cadence-1list, 137
half-cadence-1list, 137
cadence-match. See SARA vari-
ables
Callegari, Antonio, 8
Casey, Michael, 243
CD-ROM accompanying this book,
3, 26, 34, 58, 67, 72, 102, 118,
127, 133, 138, 154, 155, 189,
198, 199, 201, 214
ceiling-threshold. See EMI
variables
challenge-the-matches. See
SARA functions
choice. See create-phrase
functions
Chomsky, Noam, 152
choose. See create-phrase
functions
Chopin, Frédéric, 190
Mazurka, op. 17, no. 2, 97
Mazurka, op. 17, no. 4, 88-89, 97
Nocturne, op. 55, no. 1, 98
Prelude, op. 28, no. 6, 96
Christaller, Thomas, 151
clarifying, 29, 40, 55, 59-64, 83
classes, 125, 127, 128, 131, 139,
143, 190
Clementi, Muzio, 12-14
Piano Sonata, op. 24, no. 2, 12-14

258 EXPERIMENTS IN MUSICAL INTELLIGENCE

Common LISP Object System
(CLOS), 26, 124, 128, 129, 131,
133, 139, 214
Compass, 36
compose. See SARA functions
computer programs. See Compass;
CPU Bach; Cypher; ELIZA;
EMI; Humdrum Toolkit;
MAX; Metamuse; SARA;
SHRDLU
Computers and Musical Style, 1,
24, 25, 26, 31, 38, 48, 73, 124,
174, 198, 201, 214, 235, 238,
246
Cone, Edward, 217
consequent, 30. See also SPEAC
controllers, 36, 38, 88, 89-118, 197,
218, 219, 220
Cooke, Deryck, 1, 12, 15, 23
counterpoint, 12, 35
Bach, J. S. and, 48
EMI and, 198, 211, 213
SARA and, 69, 198, 211, 213
CPU Bach, 244
create. See SARA functions
create-phrase. See create-
phrase functions
create-phrase functions
choice, 158, 161
choose, 161
create-phrase, 154, 158
jump, 158, 160
modifier-phrase, 158, 160
noun-phrase-object, 157,

159
noun-phrase-subject, 154,
157, 159
prepositional-phrase, 157,
160

reset, 158, 160
create-work. See SARA func-
tions
creator slot. See phrase
object slots
Cypher, 35-36

D
Dannenberg, 234
database, 57-59, 83, 118, 127, 166,
168, 175
EMI and, 102, 113

SARA and, 54-59, 83, 104, 119,
120, 136, 137, 138, 14041,
144, 189
defclass. See LISP primitives
define-phrase-class. See EMI
functions
Delange, E. F,, 8
destination slot. See measure
object slots
des Prez, Josquin, 17
Qui velatus est, 17
difference. See EMI variables
Duisberg, Robert, 24
duple-function-list slot. See
lexicon object slots
duple-measure, 128, 131, 134,
135

E
ELIZA, 41
embellishments, 62, 65, 88. See also
ornaments
EMI. See Experiments in Musical
Intelligence
EMI variables,
allowance, 91, 93, 95, 97,
102
*ceiling-threshold¥, 96
difference, 90
floor—-threshold, 96
i-augmentation, 95
i-diminution¥, 95
i-fragmentation, 95
i-interpolation, 95
i-inversion%, 93,95
ji-order, 95
*master-thresholdx, 101
number-present, 99
p-augmentation, 93, 97
p-diminution, 93
p-fragmentation, 93
p-interpolation, 93,97
p-inversion, 93
p-order, 93
pattern-sizex, 96-97, 99
threshold, 99, 102, 103, 104,
119
yariants, 97,99, 102
EMI functions, 131-35
define-phrase-class, 131,
134, 135

make-beat-objects, 131,
132
event, 57, 118, 19, 123, 143, 224,
235
Experiments in Musical Intelligence,
1-102, 109-18, 123-27,
131-35, 144, 146, 149,
177-83, 217-49
ATN and, 19, 26, 40, 45, 48, 73,
109, 127, 136, 138, 151, 162,
174, 175, 177, 181, 183-86,
189, 191, 197, 211, 213, 218,
224, 235
Bach, J. S., 25, 48-52, 14449,
237
Beethoven, Ludwig van, 204 6,
208, 211, 237
Chopin, Frederic, 141-43
Cope, David, 25, 233, 237
Joplin, Scott, 25, 201
language and, 19, 25
Mozart, 223-32
Mozart, W. A, 25, 47, 178-79,
181, 205, 210, 213, 237
objects and, 109, 123-49, 151
pattern matching and, 25, 26,
28, 36, 37, 40, 45-46, 53, 57,
60, 64, 65, 79-121, 136, 151,
189, 191, 197, 198, 214, 218,
219
Palestrina, Giovanni, 25
Prokofiev, Sergei, 238-42
Rachmaninoff, Sergei, 109-18,
237
Schumann, Robert, 74-77, 237
signatures and, 11, 25, 26, 36, 37,
40, 48, 54, 79, 90, 102, 103,
109, 112,113, 115, 118, 120,
121, 123, 151, 175,218, 219,
220, 224, 243
Sonata 293, 247
Sonata 1755, 247
Sonata 3392, 248
statistics and, 218
Stravinsky, Igor, 25, 245
Varése, Edgard and, 220-23
extension, 30. See also SPEAC

F
Feil, Arnold, 10
find-closest . See SARA functions

finite state transition networks,
40-45, 151, 152, 154, 162, 164,
165, 169, 171, 193, 197

first-measures slot. See
incipience lexicon
slots

first-note-list slot. See lexicon
object slots

first-order pattern matcher, 99, 101

floor-threshold. See EMI
variables

foreground, 69. See also Schenker,
Heinrich

Forte, Allen, 67

Fry, C., 23

FSTN. See finite state transition
networks

full-cadence-list. See
cadence lexicon slots

function, 70

computer, 70, 124, 128, 129, 130,
134, 184, 185
musical, 28-33, 46, 66, 71, 73, 74,

115, 162, 169, 170, 174, 175,
177, 184, 193, 228

G

Gabriel, Richard, 130

Gabura, A. James, 23

Galeazzi, Francesco, 10, 11

gamelan gong kebyar, 67, 121

Gazdar, Gerald, 44, 154

generational composition, 214

generic functions, 129-30

get-function. See SARA
functions

H

half-cadence-1list. See cadence
lexicon slots

Handel, George Frederick, 14, 243

Messiah, 20

harmonic pattern matching, 98, 99

harmonic progressions, 28, 109, 164,
177

harmony, 20, 28, 31, 33, 35, 37, 46,
48, 67-73, 99, 100, 101, 175,
210. See also function,
musical, harmonic pattern
matching, and harmonic
progressions

Haydn, Franz Joseph, 14
Musikalisches Wiirfelspiel and, 7,
9-10, 38
Symphony no. 103, 17
hierarchical techniques, 28, 30, 33,
36, 45, 46, 70. See also
augmented transition net-
works (ATN); Experiments in
Musical Intelligence (EMI);
Schenker, Heinrich; SARA;
SPEAC; Urlinie; Ursatz
Helm, E. Eugene, 5, 6
Hiller, Lejaren, 23
Hindemith, Paul, 73
history. See SARA variables
Hoegi, Pierre, 8
A Tabular System Whereby the
Art of Composing Minuets Is
Made so Easy that Any Person,
without the Least Knowledge
of Musick, may Compose Ten
Thousand, All Different, and
in the Most Pleasing and
Correct Manner, 8
Humdrum Toolkit, 35
Huron, David, 35
hybrid pattern matching, 220-32

i-augmentation. See EMI
variables

i-diminution. See EMI
variables

i-fragmentation. See EMI
variables

i-interpolation. See EMI
variables

i-inversion. See EMI varia-
bles

i-order. See EMI variables

incipience-lexicon, 137, 140

incipience lexicon slots

first-measures, 137

incipient, 136, 137, 141

:initarg keyword. See keywords

:initformkeyword. See keywords

initialize-instance. See LISP
primitives

insert-music. See SARA
functions

instances, 128, 139, 190

INDEX 259

interchange-channels. See
SARA functions
interfaces, 191, 196-98
EMI, 189, 196-98
SARA, 196-98
intervals-off. See SARA
variables
IRCAM, 125
Isaacson, Leonard, 23
Iverson, Eric, 36

J

Janzen, Thomas, 23

Jaxitron, 144

Johnson, Margaret L., 232

Joplin, Scott, 25, 201-3

jump. See create-phrase
functions

K
Katayose, H., 232
Keene, Sonya, 124
keywords, 134
:accessor, 134
:initarg, 134
:initform, 134
Kircher, Athanasius, 1
Musurgia Universalis, 1, 2
Kirnberger, Johann Philipp, 3
Der allezeit fertige Polonoisen-
und Menuettencomponist, 2-3,
4,11
Methode Sonaten aus’m Ermel
2zu schuddeln, 12, 13, 26, 45,
199
Musikalisches Wiirfelspiel and, 7,
10
Koch, Heinrich Christoph, 10
Kotovsky, Kenneth, 34
Krasner, Glenn, 125
Kuivila, Ron, 25, 232

L
language models for music, 15, 19,
151-54, 162
augmented transition networks
(ATN), 19, 151, 153, 154
finite state transition networks
(FSTN), 151, 152, 154
natural language processing and,
19, 25, 28, 40, 42-45, 154

260 EXPERIMENTS IN MUSICAL INTELLIGENCE

recursive transition networks
(RTN), 151, 152, 154
last~chord slot. See lexicon
object slots 137,141
Lawless, Jo A, 124, 125
layer-analysis. See SARA func-
tions
layer-tuner. See SARA variables
Lester, Joel, 11
lexicon object slots, 137, 141
duple-function-list, 137
first-note-list, 137
last-chord, 137
mono-function-1list, 137
triple-function-1list, 137,
141
lexicons, 137, 141, 144, 154, 187
Lidov, David, 23
linear transition networks, 162,
164-165
linear recombinant music, 162, 164,
165
linguistics, 40; NLP and, 40
LISP primitives,
defclass, 128,134
initialize-instance, 139,
140
make-instance, 128, 132
setf, 141, 154

M

Mabhler, Gustav, 14, 20, 239

Mahling, Andreas, 36

make-beat-objects. See EMI
functions

make-best-choice. See SARA
functions

make-instance. See LISP
primitives

Mannheim rocket, 14

Manning, Peter, 243

markov chain, 169

Marpurg, Friedrich, 6

master-threshold. See EMI
variables

match? slot. See measure object
slots

match-the-database-music. See
SARA functions

match-the-databases. See SARA
functions

matching-line-number slot. See
phrase object slots
MATN. See micro augmented
transition network
MAX, 35
measure object slots
analysis, 136
destination, 136
match?, 136, 191
music, 136
measure, 127-30, 136
measures slot. See phrase
object slots
Mellish, Chris, 44, 154
melodic pattern matching, 97, 98,
99, 102
melody, 20, 28, 31, 33, 35, 37, 65-67,
74, 86, 115, 210
Mendelssohn, Felix, 16, 18
String Quartet, op. 44, no. 2, 16
Elijah, 18
Metamuse, 36
metaobject protocol, 131
meter slot. See phrase object
slots
meter. See SARA variables
methods, 139
Meyer, Leonard, 14, 20, 79
micro augmented transition network
(MATN), 175-77, 181, 194,
197, 201, 204, 205, 210
MIDI, 24, 26, 57, 58, 59, 118, 214, 217,
223, 234-35
middleground, 65-67. See also
Schenker, Heinrich
Miller; Molly M., 25
mode slot. See phrase object
slots
modifier-phrase. See create-phrase
functions
mono-function-list slot. See lexicon
object slots
mono-measure, 137
Morovec, Hans, 246, 248
Mozart, W. A,, 12, 14, 25, 28, 37, 40,
81-82, 99, 104, 118, 223, 232,
236, 238, 248
ars combinatoria and, 7
ATN and, 177
computer analysis of the style
of, 28-29, 40, 46, 104, 118, 232

Don Giovanni, 224
Fantasia in C minor, K. 475, 205,
209
Magic Flute, 14, 224
Musikalisches Wiirfelspiel and, 7,
38
Piano Sonata K. 279, 92, 94,
162-163
Piano Sonata K. 281, 61-63,
92
Piano Sonata K. 282, 61-63
Piano Sonata K. 283, 29, 31, 32,
38-39, 94, 105
Piano Sonata K. 284, 162-63
Piano Sonata K. 309, 92, 94,
162-163
Piano Sonata K. 310, 94
Piano Sonata K. 311, 100
Piano Sonata K. 330, 29, 31,
32-33, 38-39, 92, 105
Piano Sonata K. 332, 56, 100
Piano Sonata K. 333, 92
Piano Sonata K. 457, 15, 20-21
Piano Sonata K. 533, 94
Piano Sonata K. 545, 18, 56, 92,
94, 172-73
Piano Sonata K. 547a, 105
String Quartet K. 80, 182-83
String Quartet K. 155, 180-81,
184
String Quartet K. 465, 16
Symphony no. 40, 65-66
multiple inheritance, 131, 132
music slot. See measure object
slots
Musikalisches Wiirfelspiel, 2-12, 26,
38, 43, 53, 127, 162, 237, 246,
248
C. P.E. Bach and, 3-7
Antonio Callegari and, 8
E. F. Delange and, 8
Francesco Galeazzi and, 10, 11
Joseph Haydn and, 7, 9-10, 38
Pierre Hoegi and, 8
Johann Philipp Kirnberger and,
2-3,4,7,11,12
Heinrich Christoph Koch and, 10
Wolfgang Amadeus Mozart and,
7,38
Pasquale Ricci and, 8
Joseph Riepel and, 10

Maximilian Stadler and, 8
my-position. See SARA functions

N

natural language processing, 19,
25, 28, 40, 42-45, 154; ATN
and,

Newman, William S., 11, 12

NLP. See natural language
processing

nonfinite languages, 43-45

nonlinear transition networks,
162, 164

nonlinear recombinant music,
162, 164, 165

noun~phrase-object. See
create-phrase functions

noun-phrase-subject. See
create-phrase functions

*number-present *. See EMI
variables

o]

object orientation (OOPS), vii, 25,
123-31, 168

Ockeghem, Johannes, 17

Malheur, 17

ornaments, 60, 88. See also embel-
lishments

Oulipo, 246

P

p-augmentation. See EMI
variables

p-diminution. See EMI
variables

p-fragmentation. See EMI
variables

p-interpolation. See EMI
variables

p-inversion¥, See EMI varia-
bles

p-order. See EMI variables

Palestrina, Giovanni, 25

Palo Alto Research Center (PARC),
123, 124

parsing, 45, 152, 154

pattern-size. See SARA
variables

pattern-size. See EMI
variables

performance practice, ; integrated
with composition, ; quality of
music and,
phrase, 127-28, 131, 134, 135, 136,
140, 141, 143, 154
phrase object slots
creator, 134, 136
matching-line~number, 190
measures, 136, 140
meter, 136
mode, 136
tempo, 136
Plantinga, Leon, 12
polymorphic functions, 130
Pope, Stephen Travis, 125
postcept slots, 134
precept slots, 134
preparation, 30. See also SPEAC
prepositional-phrase. See
create-phrase functions
Printz, Wolfgang, 1
Phrynis Mytilenaeus oder der
Satyrischer Componist, 2
Prokofiev, Sergei, 238-42
Purcell, Henry,
Dido and Aeneas, 19

Q
Queneau, Raymond, 246

R
Rachmaninoff, Sergei,
Before My Window, 109, 115
pattern matching and, 109-18
Second Suite, op. 17, 109,
111-14, 117
ragas, 121
Rameau, Jean-Philippe, 65
rank-the-matches. See SARA
functions
Ratner, Leonard, 1, 2, 6-7, 11
real variation, 85, 86, 93
recombinancy, 1, 11, 14, 19, 20,
23-25, 26, 28, 33, 40, 48, 57,
61,112, 113, 118, 121, 123,
124-25, 137, 144, 151, 162,
184, 185, 213, 217
recombinancy. See SARA
variables
recursive transition networks,
43-44, 151, 152, 154, 162-71

INDEX 261

reflexive pattern matching, 218-232
remove-last-chord. See SARA
functions
reset. See create-phrase
functions
rhythm, 61, 220, 234
EMI and, 54, 91, 93, 204, 220
SARA and, 54, 64, 72, 96, 97, 103
rhythm. See SARA variables
rhythm?. See SARA variables
Ricci, Pasquale, 8
Riepel, Joseph, 10, 11
Roads, Curtis, 23
Rodet, Xavier, 125
Rowe, Robert, 23, 35
RTN. See recursive transition
networks

S

Saint-Saens, Camille, 17
Le rouet d’Omphale, 17
SARA, 19, 23, 25, 26, 35-38, 40, 45,
53-78, 79, 83, 85, 90, 96,
102-3, 104, 109, 118-21,
125, 127, 128, 131, 133-38,
140, 144, 151, 155, 162, 175,
183-86, 189, 190, 191, 193,
197, 198, 199-201, 210, 211,
213, 214, 215, 238, 239
SARA variables
amount-off, 102, 103, 104
analysis-lexicon, 71, 72,
73
cadence-match, 194
history¥, 194, 215
intervals-off, 102, 103,
104
layer—tuner, 193
meter, 193
pattern-size, 96,97, 99,
102, 103, 104
recombinany, 199
*rhythmx, 91, 96
rhythm?, 103
*thresholdx, 99, 102, 103, 104,
119
SARA functions
add-the-matches, 119
analyze, 71-73
challenge-the-matches, 119,
120

262

compose, 193, 194
create, 192-93
create-work, 192-93
find-closest, 184
get-function, 71,72, 73
insert-music, 189, 190
interchange-channels,
194
layer-analysis, 185
make-best-choice, 184, 185,
191, 196
match-the-database-music,
119
match-the-databases, 119
my-position, 184
rank-the-matches, 119
remove-last-chord, 194
schenker-plot, 73, 185, 186
simple-compose, 194-95, 196
splice-cadence-channels,
194
top-level-matcher, 118,119
translate-to-events,
118-19
translate-ur, 73, 186
translate-urlinie, 73, 185,
186
weight-notes, 71,72, 73

Schenker, Heinrich, 30, 65, 67, 69,

73,155

schenker-plot. See SARA

functions

Schoenberg, Arnold, 67

Phantasy for Violin with Piano

EXPERIMENTS IN MUSICAL INTELLIGENCE

signatures, 1, 11, 23, 37, 48, 81-82,

101, 194, 197, 217, 243

ATN and, 174-75

Bach, J.S., 25

Beethoven, Ludwig van, 88, 201

Chopin, Frederic, 88

clarifying databases and, 104

controllers and, 36, 89-90, 93,
103, 104, 118,

EMI algorithm and, 11, 25, 26, 36,
37, 40, 48, 54, 79, 90, 102, 103,
109, 112, 113, 115, 118, 120,
121, 123, 151, 175, 218, 219,
220, 224, 243

hybrid, 220, 222-24, 228, 232

Joplin, Scott, 201

Mozart, W. A, 25, 46, 81-82,
91-94

multi-measure, 141

objects and, 109, 119, 123, 151

pattern-matching for, 36, 79, 91,
102, 108-9, 120, 121, 151, 168,
198, 218, 245

Prokofiev, Sergei, 239

Rachmaninoff, Sergei, 109, 113,
115

recombinancy and, 26, 40, 123,
187, 191, 210

reflexive pattern matcher and,
224

rhythm, 54, 96

SARA and, 54, 96

Schumann, Robert, 74-77

Varése, Edgard, 220, 223

splice-cadence-channels. See

SARA functions
Stadler, Maximilian, 8
statement, 30. See also SPEAC
statistical analysis, 33, 36, 218-19
EMI and, 218-19
Steele, Guy, viii
Stein, Gertrude, 42
stochastic probability generators,
23
Stravinsky, Igor, 25, 245
Petrouchka, 67
structural analysis, 27-33, 53-78
subclasses, 128, 131
Sumner, Richard K., 34-35
superclasses, 128, 131

T
Taubert, Karl Heinz, 7
Tchaikovsky, Peter llyich, 19
Symphony no. 6, 19
tempo slot. See phrase object
slots
texture, 184, 220, 245
clarifying databases and, 61,
62,214
contouring, 224
controllers and, 99
counterpoint and, 211, 213
SARA and, 213
style and, 54
threshold. See EMI variables
threshold. See SARA variables
Thurstone Letter Series Comple-

finite state (FSTN), 40-45, 151,
152, 154, 162, 164, 165, 169,
171, 193, 197
linear, 162, 164
non-linear, 162, 164
recursive (RTN), 43-44, 151, 152,
154, 162-171
translate-to-events. See
SARA functions
translate-ur. See SARA
functions
translate-urlinie. See SARA
functions
triple-function-list slot.
See lexicon object
slots
triple-measure, 141
Twain, Mark, 154-57

u

UNIX, 34, 35

Urlinie, 66, 69, 74, 185, 187. See
also Schenker, Heinrich

Ursatz, 69. See also Schenker,
Heinrich

\")
Varese, Edgard, 220-23
Hyperprism, 220-23
variants. See EMI variables
Vaughan-Williams, Ralph, 18
Pilgrim’s Progress, 18
Vercoe, Barry, 234
Verdi, Giuseppe, 18
Aida, 18
voice-leading, 36, 48, 76, 175-77,
243, 245

INDEX

Bach, J. S. and, 166-69
SARA and, 201

w

Watson, Mark, 154

weight-notes. See SARA
functions

Weizenbaum, Joseph, 41

White, Jon L., 130

Widmer, Gerhard, 232

Winograd, Terry, 23, 42

Winsor, Phil, 23

Woods, William, 44, 151

X

Xenakis, lannis, 23

263

tion Test, 35
timbre, 25, 54, 200, 220, 224, 234
channels and, 24, 224
pattern matching and, 83, 121,

Accompaniment, 67 Simon, l-&erbert, 34-35
Schubert, Franz, 17 simple-compose. See SARA
Symphony no. 4, 17 functions
Schumann, Robert, 16, 74, 76-77 Slawson, Wayne, 25

Kinderszenen, 74, 76-77 slots, 131-38, 141 220, 223, 228
String Quartet, op. 41, no. 2, 16 SPEAC, 57, 76, samplers and, 59
Scriabin, Alexander, 89 ATN and, 26, 109, 136, 141, 171, SARA and, 55

second-order pattern matcher, 99, 175, 177, 183-87 tonal variation, 85, 86, 90, 91,
101 definition of, 30 200

Selfridge-Field, Eleanor, 237 hierarchy and, 69 top-level-matcher. See SARA
semiotics, 23 music and, 26, 125 functions

thematic borrowing and, 15, 19 musical function and, 31, 32, transformational grammar, 44,
set f. See LISP functions 73-74, 162,175, 177, 184 151-54, 157, 171, 174
Shakespeare, William, 154-57 pattern matching and, 26, 64-65, transition networks, 40-44, 151-52,
SHRDLU, 42 99, 109, 136, 170-72
signature dictionary, 119, 218, 219 SARA and, 54, 64-65, 68, 73-74, augmented (ATN), 40-48,

SARA and, 119 136-37 151-87

=R

"s

&
I

S
| |

|
|

VOLUME 12 THE COMPUTER MUSIC AND DIGITAL AUDIO

€Experiments in
Musical Intelligence

DAVID COPE

Experiments in Musical Inteligence extends the concepts presented in David Cope’s
previous book Computers and Musical Style (volume 6 in this series). Experiments in
Musical Inteligence describes the basic principles of analysis, patfem matfching, object
orientation, and natural language processing that are incorporated in the author’s well-
known EMI project. Cope’s system makes it possible to generate new compaositions in
the styles of various composers, from Bach and Mozart fo Prokofiev and Scoft Joplin.
The accompanying CD-ROM contains the code and documentation for the program
SARA (Simple Analytic Recombinant Algorithm), which produces new compositions in
the style of the music in its database.

Contents: Background and Overview # The Analysis Component ¢ The Pattern-Matching Component

+ The Object System # The ATN Component ¢ An Application-Level Program and Sample Output
+ Conclusions and the Future

About David Cope’s Experiments in Musical Intelligence:

In twenty years of working in artificial intelligence, | have run across nothing more
thought-provoking than David Cope's Experiments in Musical Inteligence. What is
the essence of musical style, indeed of music itself? Can great new music emerge from
the extraction and recombination of pattems in earlier music? Are the deepest of
human emotions friggerable by computed pattems of notes?

Despite the fact that Cope's vision of human credfivity is radically different from
my own, | admire enormously what he has achieved. Indeed, this lovingly written book
about a deeply held vision of musical credtivity should, | think, earn ifs place as one of
the most significant adventures of the late twentieth century.

Douglas Hofstadter, author of Gédel, Escher, Bach and
Fluid Concepts and Creafive Analogies

A-R Editions, Inc. ISBN O0-89579-337-7
801 Deming Way &8 0
Madison, WI 53717
800-736-0070
608-836-9000

9780895793379

il

Sl LIS L] | | el

	jacket001.jpg
	cover001.tif
	cover002.tif
	cover003.tif
	cover004.tif
	cover005.tif
	cover006.tif
	cover007.tif
	cover008.tif
	cover009.tif
	cover010.tif
	cover011.tif
	cover012.tif
	cover013.tif
	cover014.tif
	cover015.tif
	cover016.tif
	cover017.tif
	cover018.tif
	cover019.tif
	cover020.tif
	cover021.tif
	cover022.tif
	cover023.tif
	cover024.tif
	cover025.tif
	cover026.tif
	cover027.tif
	cover028.tif
	cover029.tif
	cover030.tif
	cover031.tif
	cover032.tif
	cover033.tif
	cover034.tif
	cover035.tif
	cover036.tif
	cover037.tif
	cover038.tif
	cover039.tif
	cover040.tif
	cover041.tif
	cover042.tif
	cover043.tif
	cover044.tif
	cover045.tif
	cover046.tif
	cover047.tif
	cover048.tif
	cover049.tif
	cover050.tif
	cover051.tif
	cover052.tif
	cover053.tif
	cover054.tif
	cover055.tif
	cover056.tif
	cover057.tif
	cover058.tif
	cover059.tif
	cover060.tif
	cover061.tif
	cover062.tif
	cover063.tif
	cover064.tif
	cover065.tif
	cover066.tif
	cover067.tif
	cover068.tif
	cover069.tif
	cover070.tif
	cover071.tif
	cover072.tif
	cover073.tif
	cover074.tif
	cover075.tif
	cover076.tif
	cover077.tif
	cover078.tif
	cover079.tif
	cover080.tif
	cover081.tif
	cover082.tif
	cover083.tif
	cover084.tif
	cover085.tif
	cover086.tif
	cover087.tif
	cover088.tif
	cover089.tif
	cover090.tif
	cover091.tif
	cover092.tif
	cover093.tif
	cover094.tif
	cover095.tif
	cover096.tif
	cover097.tif
	cover098.tif
	cover099.tif
	cover100.tif
	cover101.tif
	cover102.tif
	cover103.tif
	cover104.tif
	cover105.tif
	cover106.tif
	cover107.tif
	cover108.tif
	cover109.tif
	cover110.tif
	cover111.tif
	cover112.tif
	cover113.tif
	cover114.tif
	cover115.tif
	cover116.tif
	cover117.tif
	cover118.tif
	cover119.tif
	cover120.tif
	cover121.tif
	cover122.tif
	cover123.tif
	cover124.tif
	cover125.tif
	cover126.tif
	cover127.tif
	cover128.tif
	cover129.tif
	cover130.tif
	cover131.tif
	cover132.tif
	cover133.tif
	cover134.tif
	cover135.tif
	cover136.tif
	cover137.tif
	cover138.tif
	cover139.tif
	jacket002.jpg

