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 Abstract 
This paper describes a method that employs a structural approach to tonality to ex-
plore the distance relationships among spectral prototypes. Prototypes are obtained 
by accumulating spectra of notes that pertain to diatonic sets. A two-dimensional 
visualization is sought to view the distance relationships of spectral prototypes. Prin-
cipal Component Analysis is applied to the prototypes for dimensionality reduction. 
It is shown that a circle-of-fifths pattern emerges when the diatonic sets consist of 
major and harmonic minor scales. Similar results are obtained for synthetically gen-
erated spectra and spectra obtained from real musical sounds. 
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1.1 Introduction 
Models of tonality induction deal with the problem of determining the tonal center of 
a musical piece. The tonal center may be defined as the most stable pitch around 
which a listener organizes other pitches used in this piece. Most of the research in 
this area has concentrated on Western tonal music. Some models of tonality induc-
tion take symbolic input, such as MIDI or other forms of score representation, and es-
timate the tonal center from this information. These models attempt to either demon-
strate the emergence of tonal structure (e.g., Tillman, Bharucha and Bigand 2000) 
model music cognition (e.g., Lerdahl 2001) or deduce local or global key information 
from discrete music events (e.g., Krumhansl 1990, Vos and Van Geenan 1996, Chew 
2000, Temperley 2001). The use of symbolic information means that these models are 
isolated from the sonic qualities of the actual music. One way to apply these models 
to acoustic music is through using automated transcription. The accuracy of general-
purpose polyphonic audio-to-note transcription systems, however, is currently insuf-
ficient for them to be used in cascade with these models. On the other hand, a paral-
lel path of research is also present in which models operate on audio data (e.g., 
Huron and Parncutt 1993, Leman 1995, ¤zmirli and Bilgen 1996, Purwins et al. 2001, 
Pauws 2004, Chuan and Chew 2005, ¤zmirli 2005, Gómez 2006, and ¤zmirli 2006). 
These models deal with the fuzziness of sonic qualities present in the input. Regard-
less of the nature of the input, what is common to all models is the inherent use of 
particular structures of tonal hierarchy. That is to say, each method has its own ver-
sion of a structure that depicts distance relationships among tonal centers, such that 
closely related keys have shorter distances to each other than remotely related keys. 
However, not all models explicitly define the structure of tonal hierarchy in their 
formulation. 

Geometric models may be used to represent tonal space in which the distance rela-
tionships among tonal centers are defined. Historically, these models have been used 
to model tonal hierarchy in music. They aim to capture the structure of tonal space, 
as understood in the context of tonal practice, by utilizing different forms of geome-
tries to array points representing tonal centers. The distances between tonal centers 
represent cognitive distances. Examples of these models are: one-dimensional mod-
els (e.g., circle or line of fifths), a double helix (Shepard 1982), and a torus (Krum-
hansl 1990). An overview of geometric models can be found in Lerdahl (2001). These 
models represent structures formed by long-term listening experiences and are used 
in the interpretation of incoming musical information for tonality induction. 

The aim of the work presented in this paper is to study the relationships of key dis-
tances that arise when diatonic sets are used. This is done by analyzing the cumula-
tive spectra originating from diatonic sets. Spectra of monophonic sounds recorded 
from real instruments and synthetically generated line spectra are considered in this 
work. The purpose is to analyze the geometric relationship among tonal centers and 
compare the conformance of the outcome to music theory. Tonal centers are repre-
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sented by spectral prototypes obtained from diatonic pitch collections. The approach 
of this method is purely structural, as it only uses spectral information and disre-
gards the dimension of time. For this reason, it does not take into consideration any 
sequential or intervallic information. The spectral prototypes are obtained by accu-
mulating spectra corresponding to single notes that are members of the correspond-
ing diatonic sets. 

The method consists of two stages. In the first stage, spectral accumulation of the in-
put sounds is performed in order to find spectral prototypes. In the second stage, 
dimensionality reduction is performed on these prototypes in order to find a low di-
mensional representation suitable for visualization. 

1.2 Keys and Spectral Prototypes 
In this section, the calculation of spectral prototypes is described. These prototypes 
can be obtained in two ways. One is by using the spectra of real instrument sounds 
and the other is by synthetically generating line spectra. First, spectral accumulation 
using monophonic real instrument sounds will be discussed. The input set N consists 
of all chromatic notes in an instrument’s range Nm, m=1..mmax. Diatonic collections are 
chosen from this set forming subsets of N. Each diatonic set is used to form a proto-
type Pi,where i is the index of the key for that diatonic subset. By convention, C refers 
to index 0, C#/Db to 1 and D to 2, etc. Elements of each diatonic subset are deter-
mined by applying a musical scale pattern to the tonic note which corresponds to the 
index of the prototype. Only major and harmonic minor scales are used. For exam-
ple, the major diatonic set with index 0, D0, refers to the pitch-class set C-D-E-F-G-A-
B. This means that a note with pitch C in any octave will be an element of set D0. This 
applies to the remaining pitches in this set, all occurrences of which are elements of 
D0. Similarly, D2 refers to the set with notes of the D major scale: D-E-F#-G-A-B-C#, 
and D4 refers to the set with notes of the E major scale. In short, a note Nm is an ele-
ment of a diatonic set Di if that diatonic set contains the same pitch as Nm, regardless 
of its octave position. Naturally, each scale type has 12 diatonic sets associated with 
it. Hence, diatonic sets D0 through D11 correspond to the major scale pattern, and 
again by convention, sets D12 through D23 correspond to the harmonic minor scale 
pattern. 

The prototype for a specific diatonic set, Di, is found by calculating the accumulated 
amplitude spectra for each note in this set and then accumulating again all the note 
spectra for this set. The time signal for each note is divided into overlapping frames 
and the amplitude spectrum is calculated for each frame. The accumulated ampli-
tude spectrum of each note is calculated by summing the spectra for all frames with 
sufficient signal energy. The accumulated amplitude spectrum for note m is given by: 

 ∑
σ>

=Τ
E,k

m,kSm  (1) 
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Sk,m denotes the amplitude spectrum of frame k for the note with index m. The sum is 
calculated for frames that exceed a certain energy threshold . Each spectrum is then 
divided elementwise into its mean, μTm, for normalization. This is to account for the 
differences in energy of notes in different registers. Each prototype is then obtained 
by a second phase of accumulation that uses those notes that are elements of the as-
sociated diatonic set: 

 ∑
∈

μ
=

im DN,m Tm
mT

iR  (2) 

Ri designates the unnormalized prototypes and, for example, in the case of the major 
diatonic set, index i again runs from 0 to 11, one for each diatonic set. Finally, these 
are normalized to obtain the prototypes: 

 
Ri

i
i
RP
μ

=  (3) 

Here μRi denotes the mean of the elements of vector Ri. This normalization is useful in 
the case that the scale types used have different numbers of notes. 

As an alternative method to determining the prototypes from sampled sounds, syn-
thetically generated spectra can also be used as input to the second stage. In this case, 
instead of accumulating spectra using real instrument sounds, line spectra are gener-
ated for individual notes. The spectrum for each tone has well-known musical signal 
characteristics, such as decaying spectral envelopes and harmonic overtones. Once 
the spectra for all notes have been determined, prototypes are calculated as ex-
plained above. Whether the spectral prototypes are calculated from real musical 
tones or are synthetically generated, they are passed on to the next stage for dimen-
sionality reduction. 

1.3 Dimensionality Reduction 
The prototype vectors in their current form represent points in a high-dimensional 
space and visualization of any distance relationship of these prototypes in this space 
is not directly possible. For visualization purposes, it is desirable to represent the re-
lationship in the smallest number of dimensions possible. Evidently, any number of 
dimensions between one and three can be used as Cartesian axes to visualize the re-
lationship being explored. In order to explore the actual dimensionality of the input 
space and to obtain a visualization of the respective distances, principal component 
analysis (PCA) is utilized. PCA is a well-known method that aims to find a linear 
transformation from the original axes on which the data is represented to new ones 
called principal components that also span the input space. Principal components are 
the new orthogonal axes that are found along which the variance of the data is 
maximized, starting with the highest variance. Principal components are generally 
sorted in decreasing order with the first principal component corresponding to the 
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highest variance. An approximation to the input data is obtained by using the first 
few prominent principal components to reconstruct the data. The number of princi-
pal components, and hence the dimensionality, may then be selected in order for the 
data to be reconstructed with sufficient accuracy. A reduction in dimensionality is 
obtained if it is possible to reconstruct the data with fewer dimensions in the output 
with respect to the number of input dimensions. The number of dimensions suffi-
cient to explain the input data depends on how much of the total variance can be ac-
counted for by the principal components selected to approximate the data. Therefore, 
it is only meaningful to consider the visualizations as reliable and representative of 
the actual data if the selected number of principal components can explain the input 
by accounting for sufficiently high variance. 

In the current model, PCA is applied directly to the prototypes, Pi. When a single 
scale type (e.g., major) is chosen for the analysis, all 12 prototypes constructed for 
that scale are used. It is also possible to add a different scale type (e.g., minor) to be 
processed together with the first set to bring the total number of prototypes to 24. Be-
low, results for the major scale are given as well as the results for the combined case 
that incorporates the harmonic minor scale. Figure 1.1 shows a diagram of the com-
bined case in which the major and harmonic minor scales are used as input to the 
PCA, and the projections of data on the first two principal components are plotted to 
obtain a geometric representation of spectral distances among the prototypes. 

 

Figure 1.1.  Projections of prototypes are displayed on the first two principal components. 
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1.4 Results 
The model was tested on piano and violin sounds as well as a few variations of syn-
thetic spectra. The real instrument sounds were taken from the McGill Master Sam-
ples. The sounds were sampled at a rate of 11025 samples per second after low pass 
filtering. The spectra were calculated using a 4096-point FFT with 50% overlap and a 
Hann window. All prototypes were calculated using the frequency range 45 Hz. to 
4000 Hz. 

Initially, 12 prototypes were calculated using piano sounds for the major diatonic set. 
The notes ranged from A1 to B5. PCA was applied to these prototypes and the out-
put was displayed as a projection on the first two principal components. Figure 1.2(a) 
shows the output that resulted in a nearly perfect circle of fifths arrangement of pro-
totypes. Each prototype is shown with a diamond marker and those prototypes that 
have a fifth relationship are connected with a line. The lines are drawn to facilitate 
visualization; they are not otherwise related to the output of the PCA. For the piano 
tones, the first and second principal components, which have the largest variances, 
accounted for 42.9% (V1) and 42.3% (V2) of the total variance respectively. The next 
largest (third) principal component accounted for 3% (V3) of the variance. It can be 
concluded that this visualization is viable and the projection shown captures most of 
the vital information. Figure 1.2(b) shows the arrangement of prototypes for the vio-
lin using a major scale. In this case, the first two principal components accounted for 
82% of the total variance with almost equal weights. The third principal component 
accounted for only 3.9%. 

  

Figure 1.2. (a) Piano: major scale. (b) Violin: major scale. 
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Next, the model was tested on synthetically generated spectra. Figure 1.3(a) shows 
the results for the major diatonic set using spectra that have 20 harmonics with 12 dB 
decay per octave in their spectral envelope for each note. Fundamental frequencies 
are assigned on an equal-tempered scale. The total variance of the first two compo-
nents was 82.3%. Figure 1.3(b) shows the results when the same spectra were used 
with the major and harmonic minor diatonic sets (V1 = 28.1%, V2 = 27.5%, V3 = 9.9%, 
V4 = 9.7%, and V5 = 8.0%). 

 

Figure 1.3. (a) Synthetic spectra: major scale. (b) Synthetic spectra: major and harmonic mi-
nor scales. 

Figure 1.4(a) shows the arrangement of the prototypes for the piano when the har-
monic minor prototypes are added to the major prototypes. The distribution of the 
variance for the first five principal components was 32.5%, 31.9%, 8.5%, 7.8%, 6.3% 
and 5.1%. This shows that although the first two principal components were large 
compared to the remaining components, part of the information was not represented 
accurately due to the forced projection onto the first two dimensions. Figure 1.4(b) 
shows the arrangement for violin sounds. The distribution of the variance for the first 
five principal components was V1=31.1%, V2=29.8%, V3=9.3%, V4=7.0%, and 
V5=6.3%. The harmonic minor prototypes formed a concentric smaller circle with re-
spect to the circle of fifths for major prototypes (similar to Kellner’s regional circle 
but rotated half a step; see Lerdahl [2001] for Kellner’s circle). The irregularity of the 
spacing of the minor keys is most likely due to the fact that the PCA was not able to 
find a well-suited two-dimensional representation. 
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Figure 1.4. (a) Piano: major and harmonic minor scales. (b) Violin: major and harmonic mi-
nor scales. 

Next, the robustness of the cyclic patterns against pitch additions and deletions were 
tested. In general, it was found that omitting one or more tones or adding extra 
chromatic tones would lead to a collapse of the circular output pattern. First, the ma-
jor diatonic set was altered to observe the resulting geometrical arrangement. Figure 
1.5(a) shows the results when a minor third and a minor sixth are added to a major 
scale, bringing the total number of notes in the pitch collection to 9. In this case, the 
notes contributing to the set D0, for example, are C-D-D#/Eb-E-F-G-G#/Ab-A-B with 
the intervallic pattern WSSSWSSWS where W represents a whole tone and S repre-
sents a semitone interval. The total variance accounted for in the first two principal 
components was 36%, which means that the figure only demonstrates one particular 
projection and does not reveal the relationship in higher dimensions. Figure 1.5(b) 
shows the result when an additional diminished fifth is added to the set in part (a) 
making the set C-D-D#/Eb-E-F-F#/Gb-G-G#/Ab-A-B and the intervallic pattern 
WSSSSSSSWS. Similar to the previous example, only 38% of the variance was ac-
counted for in the first two principal components. 

Finally, the effect of pitch-class weighting was explored. This was done by construct-
ing a 12-element profile, which contains the weights for each pitch-class, and using 
this profile in the calculation of the spectral prototypes explained above. The reason 
for inclusion of this test is that many key-finding models utilize profiles in some form 
(see, for example, ¤zmirli [2005]). In this context, the major scale can be thought to be 
an on/off-type profile of the form [1 0 1 0 1 1 0 1 0 1 0 1]. This means, for example in 
the C major prototype, that the spectra of white keys will contribute with equal 
weights, whereas black keys will not contribute at all. In general, every pitch-class 
can be assigned a value indicating the relative weight of that pitch-class.
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Figure 1.5. (a) Minor third and minor sixth are added to the major scale. (b) Diminished 
fifth is added to part (a). 

This concept stems from the findings of Krumhansl, who suggested that tonal hierar-
chies for Western tonal music could be represented by the probe-tone profiles found 
experimentally (Krumhansl 1982). In order to observe the effect of pitch-class weight-
ing, three different profiles were used: Krumhansl (Krumhansl 1990), Temperley 
(Temperley 2001) and random profiles. Figure 1.6(a) shows the projection using 
Krumhansl’s profile (variances for the 5 strongest components: 33.7%, 30.1%, 9.2%, 
8.9% and 6.3%), and Figure 1.6(b) shows the projection for Temperley’s profile (vari-
ances: 34.7%, 31.1%, 9.6%, 9.2% and 5.7%). From these figures it may seem that the 
circular form is not affected by the weighting of pitch-classes. However, when ran-
dom profiles are used the circular form is not preserved. Figure 1.7(a) shows one ex-
ample of this case (variances: 21.5%, 17.3%, 13.3%, 11.2%, and 8.6%). Figure 1.7(b) 
shows the randomly generated profile that resulted in Figure 1.7(a). Figure 1.7(c) 
shows the means of variance contributions by principal component for 500 different 
profiles. For reference, Figure 1.7(d) shows the variance contributions for the un-
weighted major scale given in Figure 1.2(a). 

1.5 Discussion 
When the diatonic sets are derived using only the major or both the major and har-
monic minor scales, the circularity arises from the fact that all prototypes that are a 
fifth apart have the same distance to each other. Furthermore, the loop is closed be-
cause one ends up at the same pitch after moving up 12 steps in fifths. The proto-
types are ordered in fifths because the closest two prototypes, in terms of their com-
mon notes and hence their spectra, are those that are a fifth apart. This however is 
not true for any arbitrary pitch set. As shown above, when extra notes are included 
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in the diatonic sets the circular distribution is no longer present. The results shown in 
Figure 1.5 are due to such inputs, and in both cases the output is not viable, at least in 
two dimensions. Nevertheless, groups of three in part (a) and groups of four in part 
(b) hint at the fact that there are systematic and cyclic distance patterns among the 
prototypes of these altered diatonic sets. 

  

Figure 1.6. (a) Major scale with Krumhansl’s profile. (b) Major scale with Temperley’s pro-
file. 

The method works well with the 12 prototypes corresponding to the diatonic sets 
that employ the major scale. However, when the prototypes for the harmonic minor 
mode are added to the input, the degree to which the data is explained in two di-
mensions somewhat drops. Even so, the formation of the two concentric circles is in-
teresting and worth mentioning. The circle that contains the prototypes of the har-
monic minor mode has a smaller radius—merely because of the systematic difference 
in the magnitude of the spectra between the major and the minor prototypes. If the 
notes of the natural minor had been used, then the points representing the major and 
the minor sets would have overlapped. The two circles are related to each other by a 
constant relative angular displacement. For example, A harmonic minor always re-
sides between C major and G major. This is because it has the most common tones 
(six) with C major and the G# note in this diatonic set rotates it slightly towards the 
region with more sharps. 
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Figure 1.7. (a) Major scale with random profile. (b) Profile used in (a). (c) (bottom left) 
Mean values of variance contributions of principal components for 500 random profiles. (d) 
(bottom right) Variance contributions of principal components for the unweighted major 
scale. 

The results shown above for synthetic spectra were obtained using harmonic tones 
with a decaying spectral envelope. Other tests were also carried out by varying the 
number of partials, the level of harmonicity (random deviations from ideal harmonic 
frequencies), stretching of partial frequencies (as in the piano), and changing the rate 
of spectral envelope decay within reasonable limits. These variations did not seem to 
have significant effects on the circularity of the output pattern but did cause some 
distortions with respect to the ideal case. 

The high dimensionality of pure spectral representations and their strong depend-
ence on register are sometimes viewed as disadvantages in the context of tonality in-
duction. Chroma-based spectral representations (e.g., Fujishima 1999) constitute a 
low-dimensional alternative to pure spectral representations. These are found by di-
viding the spectrum into chroma regions and mapping the entire spectral content be-
longing to the same chroma into one output bin. The method explained in this paper 
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was also tested using a chroma-based representation by mapping the spectra to 
pitch-class profiles as given in Fujishima (1999). Again a similar circular structure 
was obtained. This shows that the information captured by a chroma representation 
contains the differences necessary to distinguish between tonal centers in a way that 
preserves their cyclic order. 

Results showing the effect of pitch-class weighting reveal that the two-dimensional 
circularity is dependent on the weight distribution of the profile used. The incorpora-
tion of profiles allows for a generalization of pitch-class weighting, and the results 
delineate the importance of tonal hierarchies used in tonal representations. It can be 
seen that random profiles do not necessarily result in a circle-of-fifths pattern. The 
flat on/off diatonic and the two profiles used can be viewed as special cases in which 
the circle-of-fifths pattern is attained. Figure 1.7 shows that the average distribution 
of principal component variances obtained by using random profiles does not dis-
play any pattern that suggests the suitability of a two-dimensional representation. It 
should be noted that the distribution given in Figure 1.7(c) includes those profiles 
that resemble the special cases that work well. However, even with those contribu-
tions the overall distribution is spread over many components. This is in contrast to 
the distribution in Figure 1.7(d) that shows the prominence of the first two compo-
nents and the sharp drop-off thereafter. 

1.6 Conclusions 
The model described in this paper demonstrated the emergence of a circle-of-fifths 
arrangement of keys when spectra of musical instruments were used. Using a struc-
tural approach to tonality, the model calculates prototypes by accumulating diatonic 
collections of spectra taken from real instrument sounds or ideal spectra. Dimension-
ality reduction is applied to the prototypes in order to obtain a visualization in two 
dimensions. It is shown that cyclic patterns emerge under a range of conditions typi-
cal of musical sounds and commonly used pitch sets. This implies that cumulative 
spectral patterns of diatonic sets carry distinct information regarding their corre-
sponding keys, and suggests that the human key inference might be mediated by a 
similar mechanism. Inadequacies of the model are the same as those of the circle-of-
fifths representation, mainly the inability to represent parallel minor relationships. 
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