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 Abstract 
We present a geometric interpretation of the Spiral-Array model of harmonic rela-
tions and compare it Lerdahl’s concept of tonal pitch space and Krumhansl’s spatial 
representation of pitch relations. The Spiral-Array model is derived from a three-
dimensional configuration of the Harmonic Network (Tonnetz). The fundamental 
idea underlying the model is the representing of higher-level objects in the spiral’s 
interior as convex combinations of the representations of the lower level components. 
By using the interior of the spiral, the original discrete space is relaxed to one that is 
continuous. Geometric mappings are demonstrated among Lerdahl’s tonal pitch 
space, Krumhansl’s, and Krumhansl and Kessler’s, spatial representations of pitch-
class and key relations, and the Spiral-Array model. The interior-point approach is 
shown to generate higher-level structures that are consistent with the results of these 
other approaches. The advantages of the interior-point approach are that it facilitates 
comparisons across different hierarchical levels, and problems that were previously 
combinatorial in nature can be modeled more efficiently and robustly, mathemati-
cally and computationally, using the continuous space in the interior. 
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4.1 Introduction 
Tonality is the system of relationships that generates a hierarchy among pitches, re-
sulting in one pitch being the most stable. Numerous geometric models for these 
pitch relations have been proposed. According to Shepard (1982a), any “cognitive 
representation of musical pitch must have properties of great regularity, symmetry, 
and transformational invariance.” Not surprisingly, many of these models are based 
on lattices that can be wrapped around cylinders to form helical structures. One such 
lattice is the Harmonic Network, also known as the Tonnetz. The Harmonic Network 
clusters pitch-classes that form higher-level structures in the tonal system, such as 
triads and keys. The lattice repeats periodically in such a way that one can roll it, at 
an angle, onto a cylinder so that the repeating pitch-class names line up one over an-
other. 

This paper argues for the representing of higher-level objects, in a systematic fashion, 
as spatial points inside such a pitch-class cylinder generated by the Harmonic Net-
work. The continuous three-dimensional space inside the spiral provides a metric for 
quantifying the distance between any two objects represented in the same space. 
Consider the pitch-class representations, the vertices of this network, and the edges 
in the network that connect these vertices. These edges between the vertices mark the 
distance between any two pitch-classes represented on the network. 

In its original form, the Harmonic Network cannot easily provide a consistent metric 
for measuring the distance between objects that generalizes to higher-level entities 
beyond pitch-classes. By venturing inside the cylinder, one can represent triads and 
keys in the same three-dimensional space as that for the pitch-classes, and measure 
the distance between any two objects, even those from different hierarchical levels, 
thus, in a sense, treating all objects equally. The idea of representing higher-level ob-
jects inside the pitch-class cylinder generalizes so that not only traditional objects 
such as triads and keys, but also less traditional pitch sets can be represented and 
compared quantitatively in the interior space. 

As mentioned above, a distinct advantage of the interior approach is that objects 
from different hierarchical levels are represented in the same space, thus facilitating 
inter-level object comparison. By utilizing the interior space, problems of pattern rec-
ognition, such as chord recognition and tonal induction, can be reduced from a com-
binatorial one to a simple nearest-neighbor search, as in the cases of key finding 
(Chew 2001) and pitch spelling (Chew and Chen 2005). Furthermore, the interior-
point approach provides a distance metric that allows for the design of computation-
ally efficient algorithms for problems of tonal comparison and change detection (see 
Chew 2006 and the paper by Volk and Chew in this issue.) 

The inspiration for this interior-point approach came from the field of Operations Re-
search. In the domain of linear optimization, for many decades, the method of choice 
to solve linear programming problems was the Simplex Method, invented in 1947 by 
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George Dantzig (1963). A linear optimization problem is one of finding the optimal 
solution as measured by maximizing or minimizing a linear objective function, while 
satisfying a set of linear constraints. The constraints can be viewed as hyperplanes in 
higher-dimensional space that form the borders of a feasible region or solution space. 
The optimal solution, when one exists, resides at one of the corner points of the feasi-
ble region defined by these constraints. The Simplex Method finds the optimal solu-
tion by pivoting between adjacent corner-point solutions, through the edge that gives 
the fastest rate of improvement in the objective function. The pivoting between adja-
cent corner-point solutions is akin to transitions between neighboring chords in the 
dual graph of the Harmonic Network. The Harmonic Network and its dual graph 
will be described in the next section. 

Even though the Simplex Method has a computational complexity that is exponen-
tial, it proves to be a reasonable approach in practice. In 1984, Karmarkar proposed 
the interior-point approach (see Hillier and Lieberman 2001: 163–168). In interior-
point approaches, rather than pivoting on the vertices of the feasible region in search 
of optimal solutions, the corner-point requirement is relaxed to allow for the search 
to proceed in the interior space, even though the optimal solution will necessarily be 
at a corner point. When iterations of the process lead to only minute improvements 
in the objective function, the closest corner-point solution is selected as the optimal 
solution. By traveling though the interior of the solution space, rather than pivoting 
through plausible solutions, albeit in a smart way, interior-point algorithms have 
been shown to be polynomial in complexity. 

Likewise, the Spiral-Array approach relaxes the requirement to stay on the vertices of 
the Harmonic Network, or those of its dual-chord space, to seek best solutions in the 
interior space. In the spirit of the adage “a picture's worth a thousand words,” the 
first part of the paper presents an image-driven guide to the geometry of the Spiral-
Array model, first proposed in Chew (2000). Representing objects out of the grid and 
inside the spiral is the fundamental idea behind the Spiral-Array model. The second 
part of the paper compares the Spiral-Array's geometric structures with other spatial 
representations of tonal pitch space proposed by Krumhansl (1978, 1982, 1990) and 
Lerdahl (2001), and discusses the similarities and differences between the metrics 
employed. Mappings among the three models are demonstrated geometrically, vali-
dating the use of the interior-point approach to representing tonal objects in space. 

4.2 From Grid to Spiral Representation 
The Harmonic Network is a network representation of pitch relations where each 
node represents a pitch-class, that is to say, a set of pitches related by some multiple 
of an octave. In network terminology, each node is a vertex of degree six (having six 
edges incident on the node). Each opposing pair of edges connects the pitch-class to 
other nodes related by one of three intervals—Perfect fifth (P5), major third (M3) and 
minor third (m3)—as shown in Figure 4.1. The Harmonic Network forms the founda-
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tion of Neo-Riemannian theory and has been attributed to the mathematician Euler 
(see Cohn 1998a, Lewin 1982 and 1987). 

 

Figure 4.1.  The Harmonic Network, also known as the Tonnetz. 

Each triangle in the Harmonic Network forms a triad (major or minor depending on 
its orientation). The network of triads forms the dual graph of the Harmonic Net-
work (see Figure 4.2). Each new edge that cuts across an arc in the original lattice 
represents a distance-minimizing transformation between two triads, a transforma-
tion that exhibits the property of parsimonious voice leading. Transformations on the 
dual graph have been used to analyze triadic movement in tonal and post-tonal mu-
sic (see Cohn 1996 and 1997).  

 

Figure 4.2.  Triads form the dual graph of the Harmonic Network. 

Pitches that belong to a given key also form compact sets of connected components 
with unique shapes that identify their mode and tonal center [see Figures 3(a) and 
3(b)]. This property was exploited in Longuet-Higgins and Steedman's shape match-
ing algorithm for key finding (Longuet-Higgins and Steedman 1971, Longuet-
Higgins 1976). Like edit-distance for comparing strings, transformations on key 
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shapes can be used as a metric for comparing keys, but would be less suitable for 
comparing objects from different hierarchical levels, for example, keys and triads. 

 

(a) C major key shape.                (b) C (harmonic) minor key shape. 

Figure 4.3.  Uniquely shaped connected components representing major and minor keys. 

Most literature on the Harmonic Network alludes to the spiral structure (or toroid 
structure when assuming enharmonic equivalence) inherent in the grid (see Figure 
4.4). However, the three-dimensional realization of the model is hardly used in solu-
tions to problems of music analysis or cognition, and is not necessary for analyzing 
transformations on (see Lewin 1987), or deriving group-theoretic properties of (see 
Balzano 1980), the network. Thus, the three-dimensional spiral configuration of the 
Harmonic Network is rarely used for more than illustrative purposes, and is fre-
quently discussed only as an interesting theoretical property. 

 

Figure 4.4.  Spiral representation of the Harmonic Network. (The convex hull of a set of 
points is the smallest shape that contains all the points. In three dimensions, one can imagine 
pulling an elastic net over a set of spatial points to get their convex hull.) 
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Other grid models that map to cylindrical spiral structures include Lerdahl’s Tonal 
Pitch Space (2001), based on a distance metric defined on a network of pitch classes 
on a cone, similar to the one discovered by Krumhansl through experimental means 
(1978). The resulting lattice of chord and key relationships also wrap nicely onto cy-
lindrical spirals that fold over into tori. Another example is Shepard’s double helical 
model for pitch relations (Shepard 1982a). These models utilize only the discrete 
space. Strict adherence to the lattice structure often leads only to integral values for 
inter-object distance produced by counting edges or transformations on the lattice. 

4.3 Getting Inside the Spiral: Geometry of the Spiral Array 
The Spiral Array is a geometric model that spatially represents pitches, chords and 
keys as points on the spiral configuration, as well as inside the spiral, of the Har-
monic Network. The fundamental insight behind the model is that any collection of 
pitches can generate a center of effect (c.e.), that is, an interior point in the convex 
hull of its component pitch representations, whose distance from any other element 
can then be measured. By using the interior space, the Spiral Array is able to repre-
sent pitches, intervals, chords (major and minor triads) and keys (major and minor) 
in the same spatial framework. It also represents the interrelations between these ob-
jects as distances measured through the interior of the spiral. 

The Spiral-Array model begins with the spiral configuration of pitch-classes as 
shown in Figure 4.4. The equation for the pitch-classes is as follows: 
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where k marks the pitch’s distance from C on the line of fifths, and C is arbitrarily set 
at position [0,1,0]. 

Each triad is represented as a point on the face of the triangle outlined by its compo-
nent pitches. Each triad is a convex combination of its root, fifth, and third. Note that 
the triad representation generated in this fashion is a point in the interior of the spi-
ral. The set of major triads forms a spiral inside the pitch spiral, shown in Figure 
4.5(a), as does the set of minor triads, shown in Figure 4.5(b). 

The major triad equation is: 

       CM k( ) =
def

w1 ⋅ P k( ) +  w2 ⋅ P k +1( ) +  w3 ⋅ P k + 4( )               (2) 
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where w1 ≥ w2 ≥ w3 > 0, and 
  

wi =
i=1

3

∑  1. The minor triad is generated by a similar 

equation: 

    Cm k( ) =
def

u1 ⋅ P k( ) +  u2 ⋅ P k +1( ) +  u3 ⋅ P k − 3( )               (3) 

where u1 ≥ u2 ≥ u3 > 0, and 
  

ui =
i=1

3

∑  1.  The weights wi and ui determine where on the 

triangle the point representing the triad resides. By choosing these weights carefully, 
the distance of the triad representation to its component pitch-classes can reflect the 
desired relations between these objects. By design, the range of possible distance re-
lations is constrained by the structure of the original Harmonic Network, as well as 
the way in which the triad representations are defined. For example, the constraint 
that the weights wi or ui should sum to one limits the point representing the triad to 

lying inside the triangle defined by the three component pitch-classes. 

      

(a) Major triad spiral.         (b) Minor triad spiral. 

Figure 4.5.  Triad representations in the Spiral Array. 
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(a) Convex hull of pitches in major key.               (b) Representing a major key. 

Figure 4.6.  Major-key span and representation in the Spiral Array. 

As in the Harmonic Network, pitch-classes belonging to a given key form compact 
clusters in the Spiral-Array model. Figures 4.6 and 4.7 show the convex hull of the 
pitch-classes, and the way in which the key representations are generated for the ma-
jor key and the minor key respectively. The major key is represented by a spatial 
point in the interior of the three-dimensional spiral structures for the pitch-classes 
and for the major triads. 

Figure 4.6(a) shows the convex hull of the spatial representations of the pitch-classes 
in a given major key. Since each major key is uniquely defined by its I, V and IV tri-
ads, the major-key representation is defined to be a point on the face of the triangle 
outlined by the spatial representations of its tonic (I), dominant (V), and subdomi-
nant (IV) triads, as shown in Figure 4.6(b). In Figure 4.6(b), the tonal center (the tonic 
pitch) is indicated by the black sphere; the three grey triangles and dark grey spheres 
in the center of the triangles represent the IV, I, and V triads. The three dark grey 
spheres outline an interior triangle, the center of which contains the sphere that 
represents the major key. Figures 4.7(a) and (b) show the corresponding geometric 
objects for the (harmonic) minor key, which uses the I, V, and iv triads. 
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(a) Convex hull of pitches in (harmonic) minor key. (b) Representing a (harmonic) minor key. 

Figure 4.7.  Minor- key span and representation in the Spiral Array. 

As mentioned above, the key representation is chosen to be a point on the triangle 
with its defining triads as vertices. Thus, the equation for the major key representa-
tion is as follows: 

   TM k( ) =
def

ω1 ⋅CM k( ) +  ω2 ⋅CM k +1( ) +  ω3 ⋅CM k −1( )               (4) 

where ω1 • ω2 • ω3 > 0, and 
  

ωi =
i=1

3

∑  1.  The minor-key definition is as follows: 

 

    

Tm k( ) =
def

υ1 ⋅CM k( ) +  υ2 α ⋅CM k +1( ) +  1−α( )⋅Cm k +1( )[ ]
                                 +  υ3 β ⋅Cm k −1( ) +  1− β( )⋅CM k −1( )[ ]

               (5) 

where υ1 ≥ υ2 ≥ υ3 > 0, and 
  

υi =
i=1

3

∑  1, and 0 ≤ α ≤ 1, 0 ≤ β ≤ 1.  The constraints on the 

weights are chosen to reflect each chord’s significance in the key. For example, in 
Equation 4, the weight for the I chord must be no less than that for the V chord, 
which in turn should be no less than that for the IV chord. In Equation 5, α and β rep-
resent the relative importance of the V versus the v triad, and of the iv versus the IV 
triad in the minor key. For example, when α = β = 1, Tm(k) represents the harmonic 
minor key. 
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(a) Major keys.                     (b) Minor (harmonic) keys. 

Figure 4.8.  Key representations in the Spiral Array. 

Like the major and minor triads, the major and minor keys also form spiral struc-
tures, as shown in Figure 4.8. Figure 4.8(a) shows a helical sequence of major-key tri-
angles, and Figure 4.8(b) shows the same for the minor-key triangles. 

4.4 A Metric to Compare Distances Between Objects 
The Spiral-Array model can be visualized as a set of nested spirals as shown in Fig-
ure 4.9. Because objects from different hierarchical levels are represented in the same 
space, the model can be calibrated so that the perceived distance between any two 
objects can be quantified. 
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Figure 4.9.  The Spiral Array model visualized as an array of spirals. 

One of the advantages of using the interior of the spiral is that Euclidean space can 
now provide a metric for quantifying the distance between any two objects from any 
hierarchical level. For example, Figures 10(a) and (b) show the relative positions of 
major and minor spirals for triad representations and for key representations respec-
tively. In these figures, traverse lines across the two helices in each pair connect ob-
jects with the same name, such as A major triad and A minor triad; the solid lines 
connect objects in the foreground, and the broken lines connect objects in the back-
ground. 

The existence of a general metric across all hierarchical levels and for as-yet-
undefined tonal objects allows one to design computer programs to compute dis-
tances between objects, and to make selections based on these distances. For exam-
ple, in the Center of Effect Generator (CEG) key-finding algorithm (described in 
Chew 2000 and 2001), pitches, say in a melody, are first mapped to their correspond-
ing pitch-class position in the pitch-class spiral, and a center of effect (c.e.) of the 
pitch collection generated. The c.e. is generated by weighting each pitch by its rela-
tive duration (or some other preferred weighting scheme). The key of the melodic 
fragment is then determined by finding the closest key representation on the major 
and minor key helices. The method generalizes to polyphonic music. 
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(a) Major and minor triads superimposed.       (b) Major and minor keys superimposed. 

Figure 4.10.  Major and minor representations in the Spiral Array. 

The CEG algorithm takes advantage of the fact that pitches, their centers of effect, 
and keys are represented in the same space to recognize key using a nearest-neighbor 
search. Figure 4.11 gives an illustration of a representative c.e. progression for a hy-
pothetical melody, shown as a squiggly line that begins at a single pitch on the pitch-
class helix, and quickly winds its way closer to its key representation, indicated by a 
box, on the minor-key spiral. 

As in the interior-point methods for linear optimization, the c.e. does not represent 
the key, just as the interior points cannot be the optimal solution. By relaxing the 
constraint of seeking solutions only on the solution grid (the Harmonic Network or 
the lattice of major- and minor-key representations), and by moving inside the spi-
ral(s), we allow even incomplete pitch-class information, as in the case of melodies 
without a leading tone, to generate a c.e. path that leads to a key solution.  

The CEG method has been shown to be confounded less often, and to reach the key 
solution faster, when compared to Longuet-Higgins and Steedman’s shape-matching 
algorithm (using the Harmonic Network) and to Krumhansl’s probe-tone profile 
method, for the fugue subjects from the Well-Tempered Clavier, Book I (Chew 2000 and 
2001). 
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Figure 4.11.  A representative center-of-effect (c.e.) progression for a hypothetical melody. 

The fact that distances can be readily computed in this general space makes the algo-
rithm particularly efficient and well suited to real-time applications. Because the 
computations are fast (linear in the input sequence), the algorithm can be used in 
real-time systems (for example, Chew and François 2005 and François and Chew 
2006) that identify key (and chords in a similar fashion) as the music is being played. 

Similarly, the advantages of a straightforward metric, representation of general tonal 
objects in the same three-dimensional space, and efficiency of computation enable the 
design of fast algorithms for pitch spelling (see, for example, Chew and Chen 2005) 
and for tonal comparison and segmentation, such as in the Argus algorithm de-
scribed in (Chew 2006). 

4.5 Comparing the Resulting Geometry of the Interior-Point 
Approach to Krumhansl’s and Lerdahl’s Tonal Spaces 
The previous two sections described the interior-point approach to representing 
higher-level tonal objects inside the pitch-class spiral. This method of representing 
higher-level objects in the same space results in an array of spirals, each representing 
a different type of tonal object. Since the Spiral Array inherits the spatial properties of 
the Harmonic Network, the incorporating of all tonal objects into the same space 
provides the added benefit of modeling perceived closeness between objects from 
different hierarchical levels. 
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In this section, the geometry of the Spiral Array at each hierarchical level will be 
compared to that of two other models, namely, Krumhansl’s (1978) and Krumhansl 
and Kessler’s (1982) multidimensional scaling solutions to pitch-class and key prox-
imity, further described in Krumhansl (1990) and Lerdahl’s Tonal Pitch Space (2001), 
including the pitch-class, chordal, and regional spaces. At this point, we choose not 
to draw comparisons to Krumhansl et al.’s harmonic charts (described in Krumhansl 
1990: 188–212), also obtained by multidimensional scaling. While these solutions con-
sistently show that chords that function in the same key are perceived to be closer 
than those that do not, the exact solutions differ slightly depending on the specific 
key context. In this article, we consider only the representations that compare chords 
one to another, independent of key context. The section concludes with a comparison 
of the distance metrics that generate these spaces. 

The purpose of these comparisons is to show that there exist direct mappings among 
the three spaces, and even when the mappings are not entirely obvious, the same to-
nal relations persist in the three models. While the fact that the three models exhibit 
striking similarities is not particularly surprising, since, after all, they are modeling 
the same tonal phenomena, the fact that such diverse approaches converge on similar 
configurations of tonal objects at each hierarchical level (pitches, triads, keys) should 
not be taken for granted. 

4.5.1 Comparison of Pitch-Class Representations 
We begin with a comparison of the pitch-class representations. Krumhansl’s model is 
derived from the application of multidimensional scaling techniques to experimental 
data. To facilitate later comparisons with Lerdahl’s tonal pitch space, an inverted 
version of Krumhansl’s pitch cone using pitch-class notation is shown in Figure 
4.12(a). The topmost layer contains pitches in the tonic triad. The second layer con-
tains the remainder pitches in the diatonic scale, and the base layer contains the five 
pitches outside the diatonic scale. 

Lerdahl’s tonal pitch space is based on Deutsch and Feroe’s idea of hierarchically or-
ganized pitch-classes (see Lerdahl 2001: 47). Lerdahl’s pitch-class cone is dia-
grammed in Figure 4.12(b). The main difference between the two pitch cones is that 
Lerdahl’s contains an additional layer highlighting the perfect-fifth interval relation. 
To map the layers from Krumhansl’s to Lerdahl’s model, one simply adds the mis-
sing layer and allows pitch-classes at each level in Krumhansl’s pitch cone to carry 
over to the next layer down the cone. 
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(a) Krumhansl’s pitch cone (inverted).      (b) Lerdahl’s pitch-class cone. 

Figure 4.12.  Krumhansl’s and Lerdahl’s pitch-class cones compared. 

As can be observed in Figure 4.12, the pitch arrangements in the Spiral Array mirror 
those of Krumhansl’s and Lerdahl’s pitch-class cones. Figure 4.13 shows the Spiral-
Array pitch-classes that correspond to each layer in Krumhansl’s cone—the tonic 
(corresponding to pitch-class 0 in the cones) appears as a white sphere in Figures 
4.13(b) and 4.13(c) as a reference, although it is not one of the pitches in the layers 
shown. Figure 4.14 shows the Spiral Array pitch-classes that correspond to each layer 
in Lerdahl’s pitch-class cone. 

Observe that the hierarchical ordering of the distance from the tonic to each level of 
pitches in the cone representation is part of the Spiral-Array structure. Compare Fig-
ures 4.13 and 4.12(a). Each layer that is closer to the base of the cone contains pitches 
that map to positions on the Spiral Array that are progressively farther away from 
the tonic. If one traces a line through the small spheres in Figures 4.13(b) and 4.13(c) 
in the sequence indicated by the corresponding level in the pitch-class cone, one 
would draw Dali-esque clock-like shapes that wrap around ever-widening spheres of 
influence away from the tonal center. 
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(a) Layer closest to apex.    (b) Second layer.  (c) Third layer. 

Figure 4.13.  From the Spiral Array to Krumhansl’s pitch-class cone. 

                          

(a) Layer closest to apex.  (b) Second layer. (c) Third layer.     (d) Fourth layer. 

Figure 4.14.  From the Spiral Array to Lerdahl’s pitch-class cone. 

Compare Figures 4.14 and 4.12(b). Each layer closer to the base of the cone maps to 
positions on the Spiral Array that define an expanding compact set. In this case, the 
convex hulls of the pitch-class sets grow in size from Figures 4.14(a) through 4.14(d). 

4.5.2 Comparison of Chord Representations 
In this section, we show the correspondence between Lerdahl’s chordal space and the 
triad structures in the Spiral-Array model. Lerdahl defines the local chord distance as 
the sum of the number of shifts along the circle of fifths necessary to transform one 
chord into the other, and the number of distinct pitch-classes between the chords be-
ing compared (Lerdahl 2001: 55–7). The table in Figure 4.15 reflects Lerdahl’s chordal 
space, a spatial arrangement of chords in a given key that mirrors the proximity rela-
tions derived using Lerdahl’s distance metric. 

Each row in the chordal space, shown in Table 4.1, traces the path highlighted in the 
Harmonic Network as shown in Figure 4.15. The sequence V, I, IV is indicated by the 
darker gray triangles, followed by the gray line representing the viio chord; the iii, vi, 
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ii sequence is indicated by the lighter gray triangles. As in Lerdahl’s chordal space, iii 
and vi neighbor I and V, and IV and I respectively, and viio is next to V and ii. 

viio ii  IV vi    I   iii      V 

 iii V     viio ii  IV  vi  I 

  vi   I   iii  V   viio    ii   IV 

   ii  IV    vi    I     iii    V viio 

  V        viio ii IV    vi    I iii 

   I  iii    V viio     ii  IV  vi 

 IV  vi    I iii    V viio  ii 

Table 4.1.  Relations among chord functions in Lerdahl’s chordal space. 

 

Figure 4.15.  Lerdahl’s chordal space mapped to the Harmonic Network. 

Because the Spiral Array inherits the pitch relations shown in the Harmonic Net-
work, the same chord relations indicated above can be demonstrated in the Spiral 
Array. The highlighted chords in the Harmonic Network in Figure 4.15 can be 
thought of as a sequence of alternating major and minor triads, connected by the viio 
chord. This same pattern is evident in the Spiral Array, as shown in Figure 4.16. In 
Figure 4.16, the broken lines mark the edges of the major- and minor-triad triangles, 
and the angled gray bars indicate the location of the viio chord. The black wavy line 
connects the alternating-major-and-minor-chord sequence and the viio chord, reveal-
ing the parallel with the Harmonic Network and thus the connection with Lerdahl’s 
chordal space. 
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Figure 4.16.  Lerdahl’s chordal space mapped onto the Spiral Array. 

 

4.5.3 Comparison of Key Representations 
This section compares Lerdahl’s regional (key) space, Krumhansl and Kessler’s mul-
tidimensional scaling solution for the 24 major and minor keys, and the key represen-
tations in the Spiral Array. Lerdahl’s regional space is built the same way as his 
chordal space, by finding the nearest local tonic chords according to the general 
chord-distance metric described in the previous section (Lerdahl 2001: 59–65). The 
general chord-distance metric takes into account the key context of a chord, and is 
the sum of the distance, on the circle of fifths, between the two key contexts, those of 
the two chords, and the number of distinct pitch-classes. The resulting table of key 
relations is shown in the right half of Figure 4.17—not according to scale, as all 
neighbors should be equidistant. 
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Figure 4.17.  Key representations in the Spiral Array and Lerdahl’s regional space. 

Lerdahl’s regional space parallels Krumhansl and Kessler’s (1982) chart of the multi-
dimensional scaling solution for key relations. In Krumhansl (1990) and the original 
1982 article, the chart shows the same configuration of major and minor keys as that 
in the regional space, with a very slight shift in alignment between the major-key and 
minor-key diagonals. 

The connection between Lerdahl’s regional space, Krumhansl and Kessler’s key 
chart, and the Spiral Array is made more apparent by the consideration of the chro-
matic pitch set. As can be seen in Figure 4.18, the key relations represented in the dif-
ferent models are equivalent. The two helices in the left part of Figure 4.18 show the 
major-key and minor-key spirals, shown as solid-line and broken-line helices respec-
tively. For direct comparison, the solid and broken lines in the regional space/key 
chart on the right highlight the parallels between the two models. 

Assuming enharmonic equivalence, the spiral structures would wrap around to form 
a torus, just like Lerdahl’s regional space and Krumhansl and Kessler’s key chart. 
Findings on mental models of key relations have been remarkably consistent. For ex-
ample, more recent experiments using magnetic resonance imaging of brain activity 
with subjects listening to melodies in different keys have further confirmed the tor-
oid structure of key relations (Zatorre and Krumhansl 2002). 
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4.5.4 Remarks on the Distance Metrics 
While we have focused primarily on the similarities among the models obtained by 
the three approaches thus far, it is useful now to highlight the specific differences in 
the metric distances employed by these approaches. 

The Krumhansl pitch-class cone and the Krumhansl and Kessler key charts are ob-
tained from multidimensional scaling of listener ratings, and are generated entirely 
from experimentally obtained data. In contrast, both Lerdahl’s tonal pitch space and 
the Spiral Array first define a model and methods for computing distances between 
tonal objects before setting out to ascertain the spatial organization of these objects. 

Lerdahl’s method for computing pitch-class distance is a combination of horizontal 
and vertical distance in the basic pitch-class space. The method for computing chord 
and key distances is a combination of counting discrete steps on the circle of fifths 
and the number of distinct pitch-classes. Specific directions for computing distances 
between chords, between chords with respect to their tonal contexts, and between 
key contexts differ one from another. 

As in multidimensional scaling, Lerdahl’s spatial organization of the objects depends 
on the distances between objects. The difference from Krumhansl’s and Krumhansl 
and Kessler’s approach is that one obtains distance ratings from listeners, while the 
other computes distances according to specific rules. The method by which these dis-
tances are translated into spatial arrangements also differs. 

In the Spiral Array, objects are computed as weighted averages of their components, 
and represented as spatial points in the structure. A distinct advantage of the inte-
rior-point approach is that objects from different hierarchical levels are represented 
in the same space, thus facilitating interlevel object comparisons. Using this ap-
proach, one can define distances between, say, a pitch class and a key, or a key and a 
particular chord. The approach treats all objects equally in the same three-
dimensional space, thus blurring the boundaries between pitches, chords, and keys, 
and other objects one might create in this space, such as pitch sets, sets of pitch sets, 
and so on. 

The interior-point approach has the added benefit of low computational complexity, 
which becomes an asset when analyzing large numbers of notes, or when consider-
ing more complex pitch-class sets. All objects in the Spiral Array are generated by 
one simple rule, that of computing the center of effect of the component parts. In the 
Spiral Array, the constraints of a discrete space are relaxed to create a continuous in-
terior space that can be used to solve problems of tonal recognition. Combinatorial 
problems in discrete space are transformed into computationally simpler ones, such 
as nearest-neighbor searches, in continuous space. 

The continuous space in the Spiral Array also allows incomplete or noisy pitch sets to 
define objects within it, and for tonal recognition problems to work well in spite of 
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such challenges. In a sense, the interior-point approach is situated between strictly 
discrete treatment of tonal space and a probabilistic treatment of the same space. The 
entire approach is defined mathematically, without employing experimental data. 

Note that the interior-point approach is not limited to the Harmonic Network. The 
idea extends to any geometric model that clusters objects that form higher-level 
structures. 

4.6 Conclusions 
This paper posits and validates the use of the interior-point approach to modeling 
higher-level structures using the spiral configuration of the Harmonic Network. To 
demonstrate this concept, a geometric interpretation of the Spiral-Array model and 
its fundamental idea of representing higher-level objects in the interior as convex 
combinations of the representations of the lower-level components has been pre-
sented. This interior-point approach not only preserves the pitch relations of the 
original lattice, it also generates higher-level structures that are consistent with other 
researchers’ results. In particular, mappings were shown between Lerdahl’s tonal 
pitch space, Krumhansl’s, and Krumhansl and Kessler’s, spatial representations of 
pitch-class and key relations, and the Spiral-Array model. Arguments for the advan-
tage of employing the interior-point approach have been provided, including its 
simplicity, computational efficiency, robustness, and generality. 
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