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 Abstract 
Various computational models have been presented for the analysis and visualiza-
tion of tonality. Some of these models require a symbolic input, such as MIDI, while 
other models operate with an audio input. The advantage of using a MIDI represen-
tation in tonality induction is the explicit representation of pitch it provides. The ad-
vantage of the audio representation, on the other hand, is wider availability of musi-
cal material and closer correspondence to perception. To obtain a better understand-
ing of tonality perception and computational modeling thereof, it would be crucial to 
compare analyses of tonality obtained from computational models operating in these 
two representational domains. This article presents a dynamic model of tonality per-
ception based on a short-term memory model and a self-organizing map (SOM) that 
operates in both MIDI and audio domains. The model can be used for dynamic visu-
alization of perceived tonal content, making it possible to examine the clarity and lo-
cus of tonality at any given point of time. This article also presents a method for the 
visualization of tonal structure using self-similarity matrices. Two case studies are 
presented, in which visualizations obtained in the MIDI and audio domains are com-
pared. 
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10.1 Introduction 
Music in many styles is organized around one or more stable reference tones (the 
tonic, in Western tonal music). This is reflected in Western music theory by the key of 
the music. Krumhansl and Shepard (1979) introduced the probe-tone technique to 
investigate one aspect of how a tonal context influences the perception of pitch, in 
particular the perceived stability of each pitch within a tonal context. The results of 
these studies were in line with music-theoretic predictions, with the tonic highest in 
the hierarchy, followed by the third and fifth scale tones, followed by the remaining 
scale tones, and finally the non-diatonic tones. Pitch-class distributions of various 
Western musical styles have been found to bear a great similarity to the tonal hierar-
chies. It has been suggested that listeners acquire the tonal hierarchies by learning 
these statistical distributions while listening to music (for an opposing view, see 
Leman 2000). The key-finding algorithm by Krumhansl and Schmuckler (see Krum-
hansl 1990) is based on the comparison between the pitch-class distribution of the 
piece under examination and the tonal hierarchies. More specifically, it correlates the 
pitch-class distribution of the piece with the tone profiles of each of the 24 keys. The 
key with the highest correlation with the pitch-class distribution is considered to be 
the key of the piece. 

As music unfolds in time, the tonality percept often changes. In particular, the tonal-
ity can be clearer at one point than at some other point. Furthermore, a particular 
piece of music may contain modulations from one key to another. These changes in 
perceived tonality may be important in the creation of expectancies and tension. 

Toiviainen and Krumhansl (2003) introduced a method for quantifying the temporal 
evolution of tonality percept. In this method, referred to as the continuous probe-
tone method, listeners were presented with a piece of music to one ear and a con-
tinuously sounding probe tone to the other ear. The listeners’ task was to rate the de-
gree to which the probe tone fitted the music at each point in time. The process was 
repeated using as probe tones each tone of the chromatic scale. This yielded a dy-
namically changing 12-dimensional stability profile. This dynamic process was mod-
eled with a system consisting of a model of short-term memory and a self-organizing 
map (SOM; Kohonen 1997). The output of the model was found to correlate signifi-
cantly with the subjects’ ratings obtained by the continuous probe-tone method. 

A number of computational models of tonality induction have been presented (for an 
overview, see Krumhansl 2004). A fundamental distinction can be made within the 
models based on the kind of representation of music they assume. More specifically, 
some of these models require a symbolic input, such as a MIDI file, while other mod-
els operate with an audio input. The advantage of using a MIDI representation in to-
nality induction is the explicit representation of pitch it provides. The advantage of 
the audio representation, on the other hand, is wider availability of musical material 
and closer correspondence to perception. To obtain a better understanding of tonality 
perception and the computational modeling thereof, it would be crucial to compare 



analyses of tonality obtained from computational models operating in these two rep-
resentational domains. 

The model presented in this article can accept both MIDI and audio input, therefore 
allowing the comparison of tonality visualizations obtained from these two represen-
tational domains. In what follows, the model is first described. Subsequently, it is 
applied to the MIDI and audio representations of F. Chopin’s Prelude in A= Major, 
Op. 28, No. 17, and O. Messiaen’s Vingt regards sur l’enfant Jésus: Regard IV. Visualiza-
tions of tonal structure of these compositions, obtained from MIDI and audio repre-
sentations, are compared. 

10.2 Self-Organizing Map 
The SOM is an artificial neural network that simulates the formation of ordered fea-
ture maps. It consists of a two-dimensional grid of units, each of which is associated 
with a reference vector. Through repeated exposure to a set of input vectors, the 
SOM settles into a configuration in which the reference vectors approximate the set 
of input vectors according to some similarity measure; the most commonly used 
similarity measures are the Euclidean distance and the direction cosine. The direction 
cosine between an input vector x  and a reference vector m  is defined by 
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Another important feature of the SOM is that its configuration is organized in the 
sense that neighboring units have similar reference vectors. For a trained SOM, a 
mapping from the input space onto the two-dimensional grid of units can be defined 
by associating any given input vector with the unit whose reference vector is most 
similar to it. Because of the organization of the reference vectors, this mapping is 
smooth in the sense that similar vectors are mapped onto adjacent regions. Concep-
tually, the mapping can be thought of as a projection onto a non-linear surface de-
termined by the reference vectors. 

10.3 Dynamic Model of Tonality 

10.3.1 Representation of Pitch-Class Content 
The pitch-class content of a given analysis window can be easily computed from a 
MIDI representation by applying a mod 12 operator to the note number values and 
summing the total duration of notes belonging to each modulo class. This leads to a 
12-component vector indicating the prevalence of each pitch-class within the win-
dow; this vector is subsequently referred to as the pitch-class distribution. If the in-
put consists of audio, the chromagram provides a similar kind of representation (e.g., 
Gómez and Bonada 2005). The chromagram can be calculated, for instance, by esti-
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mating the amplitude spectrum of the windowed signal with the FFT transform, and 
summing for each pitch-class the amplitude of the bins of the spectrum whose fre-
quencies correspond to that particular pitch-class. Alternatively, it can be calculated 
using a constant-Q filterbank with semitone spacing between adjacent filters, and 
summing the power of the outputs of the filters whose center frequencies correspond 
to the same pitch-class. It must be noted that, because of the contribution of the over-
tones, the chromagram is not an exact representation of the pitch-class content of the 
signal. 

With both MIDI and audio input, the pitch-class content analysis is carried out using 
a short sliding window; the exact length of the window is not crucial as long as it is 
sufficiently small (i.e., of the order of 100 ms). 

10.3.2 Short-Term Memory Model 
Regardless of the representational domain, the short-term memory is implemented 
as a bank of twelve leaky integrators, each representing one pitch-class, and at each 
given point of time contains information about recent pitch-class content in the mu-
sic. The length of the memory is determined by the time constant of the leaky inte-
grators. For details about the short-term memory model, see Toiviainen & Krum-
hansl (2003). 

10.3.3 Long-Term Memory Model 
To create a long-term memory model, a SOM of 36 by 24 units was first trained. For 
MIDI input, the training set consisted of the 24 K-K profiles. For audio input, the con-
tribution of overtones in the chromagram was modeled assuming a simple exponen-
tial relationship between the amplitudes of overtones, ai=0.8i-1, where ai, i = 1,Y,6, de-
notes the amplitude of overtone i, and performing a cyclic convolution of each of the 
K-K profiles with the chromagram of a modeled single tone. Regardless of the set of 
vectors used in training, the final configuration of the map is similar in terms of key 
relationships. The SOM is specified in advance to have a toroidal configuration, that 
is, the left and right edges of the map are connected to each other, as are the top and 
bottom edges. This choice is based on the fact that octave equivalence implies circu-
larity of pitch. The resulting map is displayed in Figure 10.1. The map shows the 
units with reference vectors that correspond to the K-K profiles. 
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Figure 10.1.  Structure of a self-organizing map trained with the tonal hierarchies (original 
or modified) of the 24 keys (12 major and 12 minor). The subfigure on the left depicts the map 
in two dimensions (opposite edges are considered to be joined to each other); the subfigure on 
the right depicts the map in three dimensions.  

As can be seen, the configuration of the map corresponds to music-theoretic notions. 
For instance, keys that are a perfect fifth apart (e.g., C and G) are proximally located, 
as are relative (e.g., C and a) as well as parallel (e.g., C and c) keys. 

10.3.4 Activation Pattern on the SOM 
In the trained SOM, a distributed mapping of tonality is defined by associating each 
unit with an activation value. For each unit, this activation value depends on the 
similarity between the input vector and the reference vector of the unit. Specifically, 
the units whose reference vectors are highly similar to the input vector have a high 
activation, and vice versa. The activation value of each unit can be calculated, for in-
stance, using the direction cosine of Equation 1. The location and spread of this acti-
vation pattern provides information about the perceived key and its strength. More 
specifically, a focused activation pattern implies a strong sense of key and vice versa. 
Figure 10.2 displays examples of activation patterns on the SOM. 

 

Figure 10.2.  Two activation patterns of a SOM evoked by short-term pitch-class memory. 
Left: clear tonality at the vicinity of C major. Right: unclear tonality. 
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As time goes by, the contents of the short-term memory constantly change as new 
notes are being played. As a consequence, the activation pattern of the SOM also 
changes. 

10.2.5 Visualizing Tonal Self-Similarity 
Structural features within a piece of music have been visualized with a self-similarity 
matrix (e.g., Foote, Cooper, and Nam 2002), a matrix that shows the degree of simi-
larity between different parts of a musical piece. Let  denote a vector representing 
any musical feature at instant i. The self-similarity matrix M

vi

= (mij )  is defined as 

 ,     (2) mij = s(v i,v j )

where s denotes any similarity measure. By definition, the matrix is symmetrical 
across its diagonal. Figure 10.3 illustrates schematically the calculation of a self-
similarity matrix. 

 
Figure 10.3.  Calculation of a self-similarity matrix. 

To visualize tonal structure, the similarity matrix was in the subsequent analyses de-
rived from the activation patterns of the SOM. The similarity measure used was the 
negative of the city-block distance, 

 s(vi,v j ) = − vik − v jk
k
∑     (3) 
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where vik  denotes the activation value of unit k in the activation pattern calculated at 
instant i. The contents of a self-similarity matrix can be visualized as a square using 
different colors to indicate different degrees of similarity. In the present paper, the 
matrices are visualized so that bright shades of gray stand for high degrees of simi-
larity and dark shades for low degrees of similarity. 

10.4 Case Studies 
In what follows, the dynamic model of tonality is applied to two pieces of music. 
These are PrJlude No. 17 in A= Major by F. Chopin and Vingt regards sur l'enfant Jésus: 
Regard IV by Olivier Messiaen. In both cases, three kinds of input are used: (1) MIDI 
file, (2) audio input rendered from the MIDI file, and (3) audio recording of a musical 
performance. The output of the SOM and the obtained self-similarity matrices are 
compared among these input types. In all simulations the time constant of the short-
term memory was set to 3 seconds, because this value has been found to yield the 
best match with behavioral results (see Toiviainen & Krumhansl 2003). 

10.4.1 Chopin: Prelude No. 17 in A= Major 
Figure 10.4 gives some idea of the tonal vocabulary of the Chopin Prélude. 

Allegretto

 
Figure 10.4.  First ten bars of Chopin’s Prélude in A= Major, Op. 28, No. 17. 
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Figure 10.5 shows the activation patterns on the SOM using three different input 
types and four different sections of the piece as input. The activation patterns ob-
tained from the MIDI file, the audio file rendered from the MIDI file, and the audio 
recording1 are displayed in the top, middle and bottom rows, respectively. The four 
columns in the figure correspond, from left to right, to sections at 0–7, 33–40, 75–83, 
and 83–90 seconds from the beginning of the recording, and the respective sections in 
the MIDI file and the rendered audio. These particular sections were chosen because 
they represent a wide range of tonalities within the composition. 

 
Figure 10.5.  Activation patterns of a SOM of keys evoked by F. Chopin's Prélude No. 17 in 
A= Major, and obtained from a MIDI representation (top row), an audio representation ren-
dered from a MIDI file (middle row), and an audio recording of the composition (bottom row). 
The four columns correspond to different sections in the piece (see text). Bright shades of gray 
correspond to a high degree of activation on the SOM. 

Overall, the activation patterns derived from the three different representations ap-
pear as similar, suggesting that analyses of tonality from an audio representation 
yield results similar to those obtained from a MIDI representation and thus corre-
spond to a certain degree with results obtained from listening tests (see Toiviainen 
and Krumhansl 2003). On a more detailed level, the activation patterns obtained 
from the two audio representations of the piece of music seem to be more similar to 
each other than to the one obtained from the MIDI representation. 

A global view of the tonal structure can be obtained by calculating self-similarity ma-
trices from the activation patterns. These are displayed in Figure 10.6, using a win-
dow length of 3 seconds in the analyses. As can be seen, the self-similarity matrices 
bear a great degree of similarity to each other, suggesting that the particular repre-
sentation of music (i.e., MIDI vs. audio) used in such structural analysis of tonality 
may not be critical. 
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Figure 10.6.  Self-similarity matrices calculated from the activation patterns of the SOM for 
F. Chopin’s PrJlude No. 17 in A= Major using different music representations. Left: MIDI 
input. Middle: audio rendered from MIDI. Right: audio recording of a performance. Bright 
shades of gray denote a high degree of similarity. 

10.4.2 Messiaen: Vingt regards sur l’enfant Jésus: Regard IV 
Compared to the Chopin Prélude, the rate of harmonic change is much more rapid in 
Messiaen’s Regard IV, the first five bars of which are shown in Figure 10.7. 

Bien modéré (  = 72)

tendre et naïf

 
Figure 10.7.  The opening bars of Regard IV from Messiaen’s Vingt regards sur l’enfant 
Jésus. 

Figure 10.8 displays the activation patterns on the SOM using three different input 
types and four different sections of the piece as input. The activation patterns ob-
tained from the MIDI file, the audio file rendered from the MIDI file, and the audio 
recording2 are displayed in the top, middle and bottom rows, respectively. The four 
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columns in the figure correspond, from left to right, to sections at 0–5, 15–17, 55–60, 
and 60–66 seconds from the beginning of the recording, and the respective sections in 
the MIDI file and the rendered audio. Again, these particular sections were chosen 
because they represent a wide range of tonalities within the composition. 

As can be seen, there is more difference in terms of the activation patterns between 
the forms of music representation than in the previous composition by Chopin. This 
might be due to the fact that Vingt regards sur l’enfant Jésus: Regard IV has, overall, a 
less clear tonality than Prélude No. 17, and in such cases the resulting activation pat-
tern might be more dependent on the particular representation of music used. 

 
Figure 10.8.  Activation patterns of a SOM of keys evoked by Messiaen’s Vingt regards sur 
l’enfant Jésus: Regard IV, and obtained from a MIDI representation (top row), an audio rep-
resentation rendered from a MIDI file (middle row), and an audio recording of the composi-
tion (bottom row). The four columns correspond to different sections in the piece (see text). 
Bright shades of gray correspond to a high degree of activation on the SOM. 

Again, a global view of the tonal development can be obtained with the self-
similarity matrices (see Figure 10.7). As in the previous example, the length of the 
analysis window is 4 seconds. Although the activation patterns depicted in Figure 
10.9 vary across different music representations, the self-similarity matrices of Figure 
10.10 display a strikingly similar structure. This may suggest that, although the visu-
alization of instantaneous tonal content with the method described here may depend 
on the particular music representation used, the representation of tonal structure by 
means of self-similarity matrices is more robust in this respect. 
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Figure 10.9.  Self-similarity matrices calculated from the activation patterns of the SOM for 
Messiaen's Vingt regards pour l'enfant Jésus: Regard IV using different music represen-
tations. Left: MIDI input. Middle: audio rendered from MIDI. Right: audio recording of a 
performance. Bright shades of gray denote a high degree of similarity. 

10.5 Tonality Visualization Software 
The visualizations above were created with the MIDI Toolbox (Eerola and Toiviainen 
2004) and the MIR Toolbox (Lartillot and Toiviainen 2007), which are collections of 
MATLAB functions for the analysis, visualization, and manipulation of MIDI and 
audio files, respectively. The author has also implemented an application of the 
model, called AudioKeySOM, which allows real-time visualization of tonal content 
from various kinds of audio input, such as microphone, line-in, or an audio file. Cur-
rently, this software supports only Mac OS. Figure 10.10 displays a screenshot of the 
AudioKeySOM application. MIDI Toolbox, MIR Toolbox and AudioKeySOM are freely 
downloadable at  http://www.jyu.fi/music/coe/materials. 

10.6 Conclusion 
This article has presented a model for the visualization of tonality and investigated 
outputs produced by it using two kinds of music representation, MIDI and audio. 
The examples presented above suggest that the two representations yield relatively 
similar visualizations of instantaneous tonality as activation patterns on the SOM. 
With tonally less clear material, however, greater differences in the activation pat-
terns were observed. When the tonal structure is visualized using a self-similarity 
matrix calculated from the activation patterns of the SOM, the presented examples 
suggest a relatively minor dependence on the particular music representation used, 
suggesting that this visualization method is robust with respect to the representa-
tional domain. As these observations are based on only a few examples, it is evident 
that more research is needed to corroborate them. 
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Figure 10.10.  A screenshot of the AudioKeySOM application. 

The AudioKeySOM application has a number of possible uses. For instance, it could 
be used in education as a tool for teaching concepts of tonality. Further, it could be 
used for artistic purposes as a means for adding a visual element to musical per-
formances that is controlled by the tonal structure of music. 

 Notes 
1. The recording was played by Philippe Giusiano, from the CD Chopin: Préludes op. 28 et Sonate 
en Si Mineur op. 58, published by Alphée. 

2. The recording was played by Pierre-Laurent Aimard on the CD Messiaen: Vingt regards sur 
l'enfant Jésus, published by Teldec Classics. 
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