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 Abstract 
Our approach to tonal harmonic analysis, developed after evaluating a number of 
other approaches, involves the analysis of pitch-class, rhythmic and metric context, 
melodic content, tonality, and form. Datasets examined are encoded in **kern. Par-
ticular emphasis is given to assessing problems of variable texture, in which chordal 
information is ambiguous or incomplete. Evaluation of passing tones, inner voices, 
and other minutiae of musical scores which interfere with simpler chordal assess-
ments are among the topics discussed. Recent applications of the evaluation proce-
dures are also described. 

Tonal Theory for the Digital Age (Computing in Musicology 15, 2007), pp. 99–119. 
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6.1 Present Goals 
There are numerous motivations for developing automatically generated harmonic 
analyses of music. First, automatic analysis can relieve the tediousness of manual 
analysis. More important, it is a useful step towards providing computers with a 
deeper understanding of music necessary for applications such as automated per-
formance and generative composition. Musical scores are intended for human inter-
pretation, and computers’ lack of musical insight can make their literal interpreta-
tions difficult to listen to. For example, a computer “performance” of a musical score 
from a quantized MIDI file can be quite mechanical: while a performer may slow 
down at the ends of phrases almost instinctively, a computer has no intrinsic concept 
of phrasing or cadences and will happily barrel through the score at a constant pace. 

The underlying harmonic structure of tonal music contributes significantly to an in-
terpretation. Providing this information to a computer is a large step towards gener-
ating engaging musical performances or compositions. In music query, harmonic 
analysis can be used to identify related segments of music even when the surface tex-
ture is different from one instance to the next. Harmonic analysis also reveals the 
templates of many forms in Western music, and in this sense is essential to structural 
analysis of complete works such as sonatas. 

At the core of harmonic analysis lies the correct identification of chord roots. Once 
the root is determined, it is fairly easy to determine the quality of a chord (i.e., is it 
major, minor, augmented, diminished, etc.). Once the chord root and quality have 
been determined, it is not much more difficult to assign a functional label (e.g., tonic, 
dominant, subdominant, etc.) if the music is tonal. The identification of chords in a 
continuous stream of symbolic data representing a musical score is, however, com-
plicated by a conundrum. In order to separate chords and identify chord roots, it is 
necessary to identify non-harmonic tones. In order to determine whether tones are 
non-harmonic, one needs to identify a chord root against which to compare them. In 
real musical textures, as opposed to textbook extrapolations of them, chords have the 
further properties that they can occur in a vast number of configurations and can 
contain an unspecified number of members lying beyond the normal root-third-fifth 
span. These factors make the analysis of tonal harmony in symbolic data of real mu-
sic far from trivial. 

My aim here is to present a basic methodology for identifying the roots of chords in 
symbolic score data encoded in the Humdrum kern format. (Almost 1,000 works en-
coded in this format can now be found at the websites kern.ccarh.org or 
kern.humdrum.org.) The primary approach tests four perceptual contexts of each can-
didate chord. These perceptual contexts, in order from local to global information 
about the notes in a chord, are: 
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PITCH CONTEXT: assessed by arranging chord tones into stacks of thirds and 
calculating the most compact arrangements. 

RHYTHMIC AND METRIC CONTEXTS: weighting pitch information by duration 
and metric information to refine the calculation of likely chord roots. 

MELODIC CONTEXT: incorporating information about melodic resolutions be-
tween chord and non-chord tones to further refine chord root identification. 

KEY CONTEXT: ambiguous identifications of root tones in the previous con-
texts can often be resolved by considering the musical key in which the 
chord is situated. A simple example of this would be a fully diminished sev-
enth chord which has the same quality in any inversion, but its pitch-classes 
are spelled according to the following chord to which it resolves. 

The overall process starts with an initial estimation of the chord root based on lim-
ited information from pitch alone, then refines the measurements with additional in-
formation from a gradually wider connection to other notes and chords in the sur-
rounding music. After these operations, either a cognitive decision on root identifica-
tion occurs, or an ambiguity in the harmony can be identified. 

6.2 Recent Approaches 
Among the many recent writings on the analysis of tonal music, my approach has 
been stimulated to the greatest degree by the theses of John Maxwell (1984), who ap-
proached analysis from the perspective of artificial intelligence; David Temperley 
(1996), who approached it from the linked perspectives of perception and cognition; 
and Elaine Chew (2000), who presented a mathematical model of tonal organization. 

Maxwell’s analysis is based on the joining of individual sonorities into chords. He 
defines a sonority as a set of harmonic (and possibly non-harmonic) tones sounding 
at the same time. Dissonant sonorities are linked to adjacent consonant sonorities 
based on the resolution of non-harmonic tones. His was an expert system based on 55 
rules.1 As in the example cited in the note, the rules consist predominantly of Boolean 
expressions. Maxwell’s approach works better for some musical genres than for oth-
ers. It is particularly useful for music which is both contrapuntal and tonal. The sys-
tem was subsequently expanded into a LISP-based program for harmonic analysis 
developed by Taube (1999). Some weakness that occur in this system concern (1) the 
use of the sonority as the basic unit (it does not work well for textures which are 
elaborate), and (2) the fact that the rules are applied serially rather than in parallel. 
Since rules must be applied in sequence, erroneous output from a low-level rule can 
be magnified as it is propagated onto later applications of higher-level rules. 

Temperley’s thesis (1996) and its extensions and enhancements in his first book 
(2001) represent an adaptation of the generative theory of tonal music (GTTM) of 
Lerdahl and Jackendoff (1983). Essentially, Temperley shapes the preference rules of 
GTTM to fit a digital environment. He uses this digital environment to produce 
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many of the findings reported in his second book (2007), which, however, offers an 
alternative (Bayesian) model for its analytical routines. 

In Temperley (2001) harmonic analyses start from the lowest level of a symbolic 
score. The musical data in his Melisma Music Analyzer2 is essentially MIDI data: it in-
cludes the start and stop times of a note in milliseconds and the MIDI-key number of 
the note (i.e., there are no pitch spellings).3 The data is filtered through several pro-
grams before a final tonal harmonic analysis is assigned. There are three steps in the 
process: (1) identification of meter and beat positions; (2) identification of enhar-
monic spellings of notes and the generation of a root analysis; and (3) assignment of 
key and functional harmonic labels.4 Temperley’s system is more robust than that of 
Maxwell primarily because individual rules can be overturned by other rules with 
higher priority if circumstances warrant it. The system analyzes Classical-era music 
very well and does surprisingly well when dealing with Romantic-era music. 

Chew’s geometrical model of pitches (2000), used to identify the key of a musical ex-
cerpt, has certain conceptual similarities to my work since both utilize spatial rela-
tionships between notes in the calculation of harmonies. Her spiral-array model fea-
tures the placement of the line of fifths (e.g., …, Bb, F, C, G, D, …) on a coil. The spa-
tial arrangements on the spiral express harmonic interval strength, since closely re-
lated harmonic pitches are close to each other. Pitches are combined into chords by 
delineating triangular regions between notes. The centers of these triangles connect 
with other chord centers, which then give rise to key regions. Chew’s system is opti-
mized for identifying the key of a region of music. The system can recognize chords, 
but it is not always accurate in identifying chords other than triads, since chordal 
identification is geared towards relationships of three-note groups. 

6.3 Pitch Assessment of Chords in Variable Textures 
If musical texture consisted of nothing but chords, one of the most daunting prob-
lems of harmonic detection would not exist. Textbook examples of harmonic pro-
gressions depend on the ability of the human brain to extrapolate chordal identity 
from a changing tonal context. The tonality of piece of music, a fundamental princi-
ple of organization over the eighteenth and nineteenth centuries, is itself a cognitive 
extrapolation. At any given moment, a listener or a performer may not be conscious 
of the local key. Yet analyses invariably demonstrate the malleability of the key. In 
fact, much of the sport of composition in a fixed tonality involves the manipulation 
of key. In Figure 6.1, we see a very simple passage of four-voice harmony in which 
the alto voice moves independently of the other voices. 
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Figure 6.1.  Independent voice movement in four-part harmony. 

To describe it in chordal terminology requires five symbols, even though many peo-
ple think of it as containing only three chords. Figure 6.2 shows the representation of 
the four voices of this passage in **kern, used with the Humdrum Toolkit. To these 
four voices are appended two further spines. One shows the presumed root of the 
chord at each event, while the other translates these into Roman numerals. 

 

Figure 6.2.  Humdrum **kern representation of the four voices in Figure 6.1. 

6.3.1 Root Estimation by Interval Compactness 
As a first and most important approximation in identifying the root of a chord, can-
didate chords are evaluated by a simple pitch-only harmonic model. The pitch-
classes of a chord are arranged to form a sequence of thirds above potential root 
pitch-classes. Arrangements of pitches into these “stacks of thirds” which form more 
compact chords can then be used to identify the possible root of a chord. At this 
stage, no distinction is made between chordal and non-chordal notes, and all pitches 
are presumed to be chord tones. 

In the following section, a basic root-finding algorithm is presented starting with dia-
tonic intervals. Chords are built up from the intervals of the prime, third, fifth, sev-
enth, ninth, eleventh, and thirteenth (the last three are not usually necessary for sim-
ple harmonic analysis, but they are valuable in modulatory contexts and essential for 
later tonal repertories such as late nineteenth-century classical music and jazz). These 
interval classes can be assigned numerical values used to calculate good candidates 
for the root of a chord. The pitch-only algorithm is then generalized to full chromatic 
intervals for practical use on real musical examples, and several spatial arrangements 
of pitches to generate interval-class weightings are examined. 
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ROOT IDENTIFICATION BY STACKS OF THIRDS 
For any given collection of pitches, a series of possible chord roots can be evaluated 
by arranging the pitch-classes of the notes into stacks of thirds above each possible 
root. Each increment of a third above the root can be assigned a numeric value such 
as 1. For example, if the test root were “C”, then the “C” pitch-classes in a musical ex-
tract would be assigned the value 0, and “E” would be assigned the value “1” since it 
is an interval of a third above “C”; “G” would then be assigned the value 2, “B” as-
signed “3”, and so on up to the pitch-class “A” which would be assigned the value 6, 
since it takes 6 thirds to reach “A” from “C” in a stack of thirds rising from the root 
“C”. Figure 6.3 shows the arrangement of intervals and their weights when the chord 
root starts on “C” and on “D”. The stack of thirds can also be thought of as interval 
classes which have values associated with them. For example, a unison with a test-
root has the value 0, a third is 1, fifth = 2, seventh = 3, ninth (second) = 4, eleventh 
(fourth) = 5, and thirteenth (sixth) = 6. 

 

Figure 6.3.  Representative values of diatonic interval classes for roots on C and D. 

Once the value of each pitch in the musical excerpt has been assigned a particular test 
root, all of these interval-class values can be added to generate a score representing 
the number of thirds represented in the chord. This summation can then be carried 
out using other test roots, such as for “D” where the “E” pitch-class value changes 
from 1 to 4 since “E” is four thirds, or a ninth above “D” in a stack of thirds. After all 
summations have been calculated for each test root, the lowest summation gives the 
best fit for a root on the particular pitch-class representing one of the test roots. 

 

Figure 6.4.  Chordal compactness scores for the notes B, D ,G against seven possible roots. 
“X” represents the hypothetical root if no actual chord tone is present at the unison with the 
root pitch-class. 

Figure 6.4 illustrates the steps for finding the root of the notes “B”, “D”, and “G”. 
First a summation of thirds is done when considering “C” as the root. In this case, 
“G” has a value of 2 since it is two thirds above “C”. “B” and “D” respectively are as-
signed the values 3 and 4. Thus the summation of thirds when the root is on “C” in 
this example is 2+3+4 = 9. Considering “D” as the test root will yield a summation of 
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0+5+6 = 11 since “D” is located at the test-root position, and “G”/”B” are 5/6 units 
above a root on “D”. Once all of the summations are made for each test root, the low 
score of 3 is noted for the test root “G”, which is then selected as the best choice as a 
root for the pitches “B”, “D”, and “G”. 

Figure 6.5 illustrates a more complex situation where the notes in the chord are 
spread out over time, containing both chord and non-chord tones as well as different 
durations and metrical positions. In this case, the pitch-class content of the chord is 
“A”, “B”x2, “C”, “D” and “G”. Most musicians would hear a root on “G” in this ex-
ample, even though the “D” has the longest duration, and the “G” is delayed. None-
theless, the lowest score when calculating the number of thirds found in the chord 
occurs on the test root “G” as demonstrated by the interval weight summations 
found on the right side of Figure 6.5. 

 

Figure 6.5.  Musical excerpt (left) containing changing and passing tones, and an assessment 
of diatonic test roots (right). 

Mathematically, this process of identifying the best fit for a root pitch-class is given 
in the following equation: 

     (1) 

where R is best measured root, p is the set of test roots (pitch-classes), n is an enu-
meration of all notes in the musical example, and In,p is the numeric weight for the in-
terval of note n given the test root’s pitch-class p. Sigma represents a summation op-
eration in mathematics, and “min” means do separate summations for all values of p 
(test root pitch-classes), and select the pitch-class which yields the lowest summation 
result. Notice that the lowest score occurs when the root is “G”, however a root on 
“B” has a nearly identical score: If there were three “B” notes in the music, then the 
scores would be tied between the possible roots on “G” and “B”. 

EXTENDED MUSICAL EXAMPLE 
Figure 6.6 shows an excerpt of actual music along with a harmonic analysis under-
neath as well as the pitch-class for the root of each chord. The pitch-classes of the 
notes in each chord region are given in the table shown in Figure 6.7. Note that 
rhythmic information is not being considered at this stage, and only the note pitches 
are being used to identify the root of the chords. 



 
106 TONAL THEORY FOR THE DIGITAL AGE 

 

Figure 6.6.  J. S. Bach, Well-Tempered Clavier, Book I, Fugue 1, Bars 4 and 5. 

 

Figure 6.7.  Pitch-class content for each chord region in Figure 6.6. 

For each of the chord pitch-class sets found in Figure 6.7, the root identification 
method of Equation 1 matches to the same root identified manually in Figure 6.6. 

6.3.2 Chromatic Interval-Class Generalization 
The diatonic interval space which is used to generate triadic distances from the root 
to other pitch-classes found in the chord can be generalized to a chromatic space 
which is more useful for practical application in music written in any musical key. In 
the construction of a triad in tonal music, there are two types of intervals which occur 
in the stacks of thirds that build a chord: the major third and the minor third. Figure 
6.8 illustrates the options for placing a chordal note above “C”. In diatonic space, the 
note above “C” is an “E” with any accidentals applied to the notes being ignored. In 
a chromatic context, there are exactly two options: either E natural which forms a ma-
jor third above “C”, or an E-flat which forms a minor third above “C”. 

 

Figure 6.8.  Relationship between diatonic and chromatic thirds. 



 
SAPP: COMPUTATIONAL CHORD-ROOT IDENTIFICATION 107 

To build a full triad, the process can also be extended starting on E and E-flat. Figure 
6.9 displays how the second level of thirds in a chord with a root on C natural con-
sists of three options: G-sharp, G-natural, and G-flat. This configuration can be used 
to describe the four possible theoretical triads in music theory: major triad, minor 
triad, diminished triad, and augmented triad. 

 

Figure 6.9.  Major/minor third pathways visualized geometrically, and resulting triads. 

The process of stacking chromatic thirds above the root can continue further until all 
chromatic intervals are incorporated. Figure 6.10 shows this chromatic stack-of-thirds 
which forms the same pitch organization as Euler’s Tonnetz. 

 

Figure 6.10.  Diatonic and chromatic interval-class arrangements with an example root on 
“C”. 

The chromatic and diatonic stacks of thirds can be related to each other by control-
ling the angle between the major and minor third in the second dimension. When the 
angle between the major and minor third is set to zero, as illustrated in Figure 6.11, 
the chromatic and diatonic spaces are equivalent (or nearly so when ignoring more 
exotic intervals such as the augmented unison). As the angle increases to 60 degrees, 
the ratio of the perfect fifth to the major/minor third changes from 2:1 to 1:1. 
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Figure 6.11.  Parametric angle for chromatic interval space (equivalent to diatonic space 
when the angle is set to 0). 

To evaluate the relative usefulness of diatonic and various forms of the chromatic ar-
rangement of pitches, the root-finding algorithm of Equation 1 can be used to meas-
ure the root-identification error rate given interval weightings derived from various 
pitch configurations. Figure 6.12 shows the measured error rates using a set of 3,200 
chords from 50 Bach chorales. Notice that the error rate remains steady between 11 
and 12 percent in the range, but when the perfect fifth interval weight becomes less 
than that of the major/minor third, the error rate suddenly jumps. As the ratio of the 
fifth to the third further decreases as the parametric angle increases above 60 degrees, 
the error rate quickly increases. 

 

Figure 6.12.  Identification error rate in a test collection of chords based on the chromatic an-
gle space. 

6.3.3 Other Pitch/Interval Spaces 
The diatonic arrangements of thirds and the Euler Tonnetz configuration are low-
dimensional pitch spaces which can be used to calculate interval-class weights. How-
ever, other arrangements can also be examined. 
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The Tonnetz arrangement of the pitch-classes does not necessarily represent the best 
arrangement of pitches to calculate interval weights. Also, not all interval classes 
have equal importance when finding the chord root by intervallic compactness. 

Figure 6.13 displays a plot showing the sensitivity of various interval classes in the 
identification of the correct root. The horizontal axis represents the numeric value of 
each chromatic interval class. The horizontal scaling and offset is arbitrary and will 
not affect the root identification. Typically the unison (labeled C) is given a value of 
zero, and the perfect fifth (labeled G) is given a value of one when comparing various 
pitch-class configurations. The hollow and filled circles just distinguish the various 
pitch/interval classes. The interesting part of the plot is the horizontal lines attached 
to each circle. These lines indicate the amount variability that can be applied to a sin-
gle interval weighting, while keeping all other weightings constant, yet still yielding 
the same or better identification error rate. 

For example, the horizontal line that extents to the left of the circle labeled “F” repre-
sents the range of interval weights for a perfect fourth which will generate the same 
or better identification rate for the chord test set. If the interval weight for P4 (a per-
fect fourth) is reduced by up to half of its original value, the identification error rate 
will be as good or better than if the original weight were used. In other words, the 
presence of a perfect fourth is not as damaging for root identification as predicted by 
the basic Tonnetz pitch layout. Keep in mind, however, that this analysis applies to a 
specific test set of chords, and results may change if other test sets are used. 

Nonetheless, notice that there are two basic categories of interval classes in Figure 
6.11: interval weights which can be varied a lot without changing the results, and in-
terval weights which can only be changed a little before worsening the results. The 
former are mostly interval classes which are very rare (above the root), and not usu- 

 

Figure 6.13.  Interval weight sensitivity for chromatic interval-class arrangements (angle = 
60 degrees). 
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ally found in chords. These interval weights can be set to just about any value, and 
their error rate will remain the same or better than the original weight: all of the 
(doubly) diminished intervals except the d5 and d7, as well as all of the augmented 
intervals except for the A4 and A2.  

The fifteen other intervals have various tendencies; M2 and M6 weights cannot be 
changed without raising the error rate. The weights for M3, P5, d5 and P4 can all be 
lowered, yet keep the error rate the same or better. The weights for minor intervals 
(m2, m3, m6, m7), M7, and A4 can all be increased while keeping the error rate con-
stant or reducing it. 

Using the tendencies of the interval-class weights in the Tonnetz to either increase or 
decrease, other arrangements of pitches/intervals can be designed and evaluated. 
Figure 6.14 shows a set of interval-class weights which yields a 50% decrease in the 
error rate of the test set of chords. Most intervals in the diatonic area have become 
very sensitive and cannot be changed without increasing the error rate. 

 

Figure 6.14.  Monte Carlo and simplex optimization of the error rate. 

The interval weights given in Figure 6.14 were generated by Monte Carlo methods 
similar to simulated annealing. First, all interval-class weights were set to zero. All 
chords were analyzed with this initial set of weights which will not find the correct 
roots very well. Then a random value is added to each interval weight (such as a 
number between 0 and 1), and the test set is then analyzed for errors using the new 
weights. The previous step is repeated a large number of times (such as a million 
times), adding different random values to the original zero-interval weights. Then 
the configuration which gives the best error rate is set as the new default position 
from which a new million random searches are done. Each time the default position 
changes to a new set of values, the random value range decreases (such as 5% after 
each move). 
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After the Monte Carlo method reaches the limit of its optimization, the downhill sim-
plex method is used to search for the nearest local minimum in the error rate by 
slightly adjusting the ending interval weights derived from simulated annealing. 
Thus, the horizontal lines show the equivalent error-rate range, since the weights 
have been adjusted to the local minimum of the error function. 

6.4 Chordal/Non-Chordal Differentiation 

6.4.1 Rhythmic Contexts of Non-Harmonic Tones 
Pitch measures alone may not be sufficient to accurately identify all types of chords. 
In works of the eighteenth and nineteenth centuries, non-harmonic tones almost al-
ways resolve by step to a chord tone, or depart by step from one. The evaluation of 
these tones cannot be made from pitch-class alone, because various ambiguities arise. 
It benefits from assessments of meter and duration, because accented non-harmonic 
tones contradict rhythmic scaling preferences. For example, it is possible for two 
chords to have the same pitch-classes, yet different roots (Example 6.15). 

 

Figure 6.15.  Three chords with different roots but similar pitch-classes (each collection con-
tains the pitches C, E, and G). 

The two primary rhythmic measurements available from a musical score are (1) the 
duration and (2) the metric position of a note. To create a measure of rhythmic scal-
ing, we combined measures for scaling both duration (δ) and meter (λ). With regard 
to duration, the whole note, half note, quarter note, eighth note, and sixteenth note 
are scored 4, 2, 1, 0.5, 0.25 in binary meter contexts. With regard to metrical position, 
they are scored 2, 1, 0, -1, -2. The combination produces a binomial expression. Some 
examples are given in Figure 6.16. 

 

Figure 6.16.  Binomial expressions for discrimination of a series of notes of (logically) identi-
cal duration (and pitch) with different metric placements in common time. 
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These rhythmic and metrical qualities may be incorporated into the (pitch-based) 
chordal-compactness algorithm by scaling the root-interval weighting of the pitch by 
its duration and/or metric position. Equation 2 shows the duration-scaling formula 

   (2) 

where Dn is the duration of the nth note in a chord, and delta (*) is a scaling factor 
which indicates the relative importance of duration to the identification of the chord 
root. (Note that if * is set to 0, then the duration-scaling of pitch information is re-
moved.) Similarly, Equation 3 shows the metrical scaling formula 

   (3) 

where Ln is the metrical weight of the nth note and lambda (8) is the scaling factor. 

For passages with many passing tones, such as the one shown in Example 6.9, the ef-
fects of rhythmic and metrical scaling on root identification are dramatic. On the ba-
sis of pitch alone, the best root estimation for Example 6.17 indicates C as the root in 
all three cases. 

 

Figure 6.17.  Using only pitch as a basis for root assessment, the estimated and actual roots 
differ in two cases out of three. 

When rhythmic and metric evaluation are added, with *= 0.25 and 8= 0.25, the esti-
mates change significantly (Figure 6.18). 

 

Figure 6.18.  Root assessment in which pitch information and rhythmic information are com-
bined. 

6.4.2 Melodic Contexts of Non-Harmonic Tones 

PASSING TONES 

From these evaluations, we may proceed to differentiate between non-harmonic 
tones which conform to our rhythmic-scaling model and those which do not. In the 
first group we include unaccented passing tones, neighboring tones, melodic anticipa-
tions, and escape tones (Figure 6.19a). 
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More problematical are accented passing tones, melodic suspensions (shown here 
without a tie from the preceding note), retardations, and appoggiaturas (Figure 
6.19b). 

 

Figures 6.19a and 6.19b.  Selected categories of non-harmonic tones which do not conform 
to our rhythmic-scaling model. The nature of pitch motion is indicated by letter: E = equal (no 
pitch motion), S = step (+ = up, ! = down), and L = leap. 

One additional category consists of what we call hybrid figures (Figure 6.20). 

 

Figure 6.20.  Melodic figures containing passing tones with mixed accentuation features. 

Unaccented passing tones can be distinguished by rhythmic scaling, but accented 
ones and mixed figures, such as those shown in Figure 6.20, cannot. Metrical scaling 
is of particular value in evaluating them. Excluding only the pedal tone in Figure 
6.20, all the passing tones shown in Figures 6.19 and 6.20 resolve to a tone within an 
unambiguous chord region. 

MELODIC PITCH HIERARCHIES 
The next step is to determine whether tones which are outside the assumed triad are 
non-chord tones. A particularly conspicuous defect in the pitch-only assessment of 
chordal compactness is the possibility of misinterpreting what is actually the root as 
an outlying addition to the triad (or vice versa). The most common confusion in-
volves chords with the apparent members 1-3-5-7 and 1-3-5-6. A 1-3-5-13 chord in the 
tonic could also be a 1-3-5-7 chord in the key of the submediant if the 13th is trans-
posed down two octaves. Therefore all 6–5 suspensions and many other accented 
non-harmonic tones are incorrectly identified when only pitch and rhythmic infor-
mation from the notes within a chord are used. In addition, the optimal rhythmic 
weighting of root intervals tends to bias this identification incorrectly toward the in-
terval of a sixth as a root. Therefore, the melodic context of a note is needed to help 
identify the correct root. 
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All basic forms of non-harmonic tones (e.g., passing tones, neighboring tones, and 
suspensions) involve resolution into or out of a chord tone. Therefore, if two melodi-
cally adjacent tones are found in the same chord region, it is highly likely that one of 
these is a chord tone and the other is a non-harmonic tone. 

It follows that any high-order triadic position (such as a 9th, 11th, or 13th) can be scaled 
down to be treated instead as a note outside the stack of thirds by attaching it to a 
lower-order triadic position. For example, previous portions of the root-finding algo-
rithm would identify a chord containing the correct set of intervals 1-3-5-13 as a 
chord built on the 13th, which generates a more compact set of root intervals: 1-3-5-7. 
However, if the 13th resolves melodically to the fifth degree of the chord, the 13th can 
be reinterpreted as the sixth scale degree. Therefore, the correct root configuration of 
1-3-5-6 is preferable to the 1-3-5-7 analysis of the sixth scale degree. We call this pro-
cedure a pitch-hierarchy assessment (Figure 6.21). 

 

Figure 6.21.  Model for pitch-hierarchy assessment, in which a note with a high triadic chord 
position is tested to see whether it is connected to a lower position in a different triad, in 
which case it is more likely to be a non-chord tone than an outlying chord tone. 

We can now add the pitch-hierarchy assessment to the previously defined chord-
tone metrics. Figure 6.22 shows revised root calculations for the musical example 
found in Figure 6.5.  Pitches which approach or leave a lower triadic-level note are 
reassigned lower weights.  For example, with the test root on C, the A pitch-class as-
signed to the 13th in the chord can be reinterpreted as a melodic extension of lower 
triadic notes, since it precedes the G (in the 5th position) and follows the B (in the 7th 
position). 

 

Figure 6.22.  Root-assessment scores revised for pitch hierarchy. 
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6.4.3 Key Context 
Most roots can be identified by incorporating the previous three contexts into one al-
gorithm. However, there are two cases which can be improved by considering the lo-
cal key context of the chord. These are the case of a missing root and the occurrence 
of an ambiguous root. We encounter both in Schubert’s posthumously published 
Theme and Variations on a theme by Anton Hüttenbrenner in A Minor for piano 
D.576 (Figure 6.23). 

 

 

Figure 6.23.  The theme (a) and eleventh variation (b) of Schubert’s A Minor set, D.576. 

In the variation shown above, the actual root (a) of the downbeat in Bar 1 does not 
appear until the end of the measure. The ear might hear the downbeat in the context 
of A Minor because the key has been restated over and over in the preceding varia-
tions, but confined to the evidence present, an algorithm will not find it. The phe-
nomenon of a missing root occurs again in the second measure, which follows the 
pattern of Bar 1. Still more contrary to traditional concepts of tonal harmonic usage is 
the downbeat of Bar 6 in the variation, where in the absence of the hypothetical root 
(a) we find a triple instance of the third (c) and a single instance of the fifth (e). In 
manual analysis of such passages, there would be no absolute consensus among 
theorists on the root in Bar 5 either, because although it is literally a diminished 7th on 
the seventh scale degree (g#), it may also be considered a 9th chord on the dominant 
(E), in which case the missing root on the downbeat of Bar 6 might enable us to 
“hear” the implied pedal point on E that starts at the beginning of Bar 5 and is sup-
plied by the actual E in the bass on the second half of the first beat of Bar 6. 

Among the several existing harmonic-analysis programs we have explored, the high-
est degree of compatibility with manual analysis seems to exist in Sleator and Tem-
perley’s Melisma Music Analyzer (2000). This owes partly to its strengths in time seg-
mentation. Melisma, the main objective of which is to model music cognition, fixes a 
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minimum harmonic-rhythm duration (e.g., at the eighth-note level) and incorporates 
adjacent chord regions in which the notes representing the root remain at constant 
pitch. The rapid rate of apparent harmonic change in Schubert’s theme and varia-
tions offers one case in which several divergences from manual analysis occur. 

6.5 Analytical Applications 
To test the two-angle approach we ran our evaluation procedure on 70 Bach chorales 
which had been manually analyzed prior to the test.6 The repertory contained 3,162 
chords. To evaluate the accuracy of various components of the root-finding algo-
rithm we ran several tests comparing the outcomes of the manual and automatic pro-
cedures. A musical example and its analysis are shown in Figure 6.24. 

 

Figure 6.24.  Automatic chord identification of a four-part Bach chorale with inner voice in-
dependence. 

6.5.1 Results 
In this series of tests, we found that 39% of the pitch sets constituted simple triads, 
26% constituted triads with an added seventh, and 35% included non-harmonic 
tones. The rearrangement of tones to produce chordal compactness produced an 
overall accuracy rate of 90%. In the most complex cases, the roots were identified cor-
rectly 75% of the time. The number of specific pitch sets encountered totaled 246. 
Some sample cases and their rate of occurrence are shown in Figure 6.25. 

 

Figure 6.25.  Selected pitch sets from among 246 found in 70 Bach chorale harmonizations. 

In conducting these tests we found that while a uniform interval space is elegant be-
cause of its lower dimensionality, the lowest error rate with root-interval weights 
varied independently. If the techniques are optimized for one dataset, they may not 
work as well with another. 
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6.5.3 Summary of Error-Rate Calculations 
Basic pitch-only information typically gives a root-identification error rate of about 
10% for the chorales. By adding rhythm to basic parameterized pitch-space configu-
rations, the error rates improve from about 9% to 8% for duration and to about 6% 
for metric data. Interval weights randomly optimized to minimize identification er-
rors in the same data reduce the rate to 4.5%. Alternatively, combining duration and 
metric data yields approximately a 5% error rate, which is close to the maximum 
possible error rate using optimized interval weights alone. For optimized interval-
weight pitch configurations, the error rate improves by only 0.1% when durational 
data is considered, and from 4.5% to 3.5% when metrical position is taken into ac-
count. Adding the melodic-context hierarchy corrections to compensate primarily for 
accented tones decreases the root-identification error rate to about 1%. 

6.6 Future Work 
The harmonic analysis of a complete work involves two processes of segmentation. 
The first consists of identifying a sequence of chord regions. The second involves 
identifying the root of the chord that dominates each region. Most of our focus is on 
the second, because it is essential to making the first more efficient. We are still 
evaluating three possible means of further refinement in this process: (1) the removal 
of melodically linked tones from the calculation, (2) the reassignment of the weight of 
a linked tone to the attached chord tone, and (3) the scaling of linked tones in a man-
ner similar to that in which we scale rhythm. There are further needs to balance 
rhythmic and melodic rules generally, to evaluate low-level rules on other reperto-
ries, and to normalize root scores in different time spans. 

We would like to experiment with a matching process for regions of a work with to-
nally similar profiles to establish whether the model of a harmonically well-defined 
section might serve to disambiguate missing and displaced roots in passages with a 
thin musical texture. We also hope to explore the issue of particular harmonic 
rhythms specific to individual genres. 

Some experimentation with our procedures has already been attempted for auto-
matic phrasing of electronic data according to Sundberg’s Director Musices rubrics for 
expressive performance. (See http://www.speech.kth.se/music/performance/performance_ 
emotion.html). 

For those who wish to run their own experiments, data in the Humdrum kern format 
is available at the KernScores website (http://kern.ccarh.org and http://kern.humdrum. 
net), which is briefly described in Sapp (2005b). Program source code for the analysis 
of Humdrum files can be found at http://museinfo.sapp.org and at 
http://extras.humdrum.org. 

 

http://www.speech.kth.se/music/performance/performance_
http://kern.ccarh.org/
http://museinfo.sapp.org/
http://extras.humdrum.org/
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 Notes 
1. As an example, his Rule 7 reads: “If a sonority is not tertian OR it is accented AND 
dissonant AND the next sonority is tertian AND the next sonority has a lower tertian 
dissonance level OR it is unaccented AND dissonant AND the last sonority is tertian AND the 
last sonority has a lower tertian dissonance level, THEN the sonority is dissonant in context.” 

2. See http://www.link.cs.cmu.edu/music-analysis. 

3. The 2007 book was published too recently to permit evaluation of its key-finding approach 
within this article, but Temperley’s own contribution (Ch. 2) pursues some of the topics 
(particularly “tonalness”) introduced in the book. 

4. Real-time analysis from Temperley’s system can be found for the virtual scores at 

http://kern.humdrum.net. 

5. Riemann’s most comprehensive work on harmony was published in German in 1893 and 
translated into English in 1895. His use of the Tonnetz in a musical context was borrowed from 
Ottokar Hostinskv’s Die Lehre von den musikalischen Klängen (1879). 

6. Fifty of the chorales were marked as found in music-theory literature as compiled by David 
Huron. Another 20 were analyzed by me. The virtual scores for the Bach chorales and their 
harmonic analyses can be downloaded from http://kern.humdrum.net/cgi-bin/ksbrowse?1=/users/ 
craig/classical/bach/bhchorale. 
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