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 Abstract 
The doubly circular relations of the major and minor keys based on all twelve pitch-
classes can be depicted in toroidal models. We demonstrate a convergence of deriva-
tions from the different bases of conventional harmonic theory and recent experi-
ments in music psychology. We present a formalization of the music-theoretical 
derivation from Gottfried Weber’s 1817 chart of tone-centers by using a topographic 
ordering map. We find the results to be consistent with Krumhansl and Kessler’s 
1982 visualization of perceptual ratings. 
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5.1 Spatial Models of Key Relationships 
Space is a natural medium for imagining relationships between percepts. Similarity 
of percepts can be identified with spatial proximity. Spatial distances can be repre-
sented mathematically by a similarity measure. Some integrated percepts can be de-
composed into principal perceptual attributes that correspond to axes or their spatial 
projections. Perceptual models of emotions, timbre, pitch, and keys also use spatial 
representations to portray key relations. For a circular view of pitch-class, however, 
Euclidean space is not appropriate. Manifolds such as helices1 and toroids are more 
suitable. Here we consider spatial representations of key relationships in tonal music 
in two contexts—that of music theorists and that of psychologists. We show the suit-
ability of computer modeling procedures to express these relations spatially. 

The geometrical models of tonal relations that emerge from such study seem to be in-
fluenced by the epistemological assumptions made. We have examined in detail 
three pathways to such models. They issue from analogue analyses in music litera-
ture, speculations of music theorists, and experiments by music psychologists. We 
have sought to identify equivalences among these approaches through the use of 
visualization and clustering algorithms such as principal components analysis, mul-
tidimensional scaling, independent component analysis, self-organizing feature 
maps, and correspondence analysis (Purwins 2005). 

5.1.1 Heinichen’s Circles 
From the early eighteenth century until the appearance of Wagner’s Tristan (1857), 
models of key relationships were largely dominated by tonic-dominant progressions 
and major-minor dualities. The most familiar of early geometrical explanations of 
key relationships (Figure 5.1) is given in Johann David Heinichen’s General-bass in der 
Composition of 1728.2 Heinichen’s interest was prompted by the gradual adoption of 
equal-tempered tuning, which standardized the tuning of thirds, thus making the 
difference between major and minor modes more obvious than it had been when 
temperaments were more variable. Graceful modulation became a predominant in-
terest in the nineteenth century, when a common system of tuning was taken for 
granted. 
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Figure 5.1.  J. D. Heinichen’s chart of key relationships (1728: 837). Note that in contrast to 
later simplifications showing only major keys (in 12 positions), Heinichen interleaves relative 
minor keys (24 positions), which can be parsed into major- (here ma) minor (mi) pairs (e.g., 1 
[C Major], 2 [A Minor], etc.). 

In Heinichen’s Circle, 24 slots are filled alternately by major and minor keys. The C-
G-D… Circle (odd numbers, major keys) is interleaved with the a-e-b… Circle (even 
numbers, minor keys). Note that the only tonal elements of this arrangement are mi-
nor thirds and perfect fifths. The many variants of Heinichen’s Circle included those 
of David Kellner (Treulicher Unterricht im General-Bass [1732]) and Johann Mattheson 
(Kleine General-Bass-Schule [1735]). Kellner suggested decomposing the two nested 
circles into a single circle. 

5.1.2 Weber’s Grids 
In search of a systematic explanation of tonal relations, the German composer, theo-
rist, and inventor Gottfried Weber, in his Versuch einer geordneten Theorie der Tonsetz-
kunst zum Selbstunterricht (1817), dealt first with chord types. He distinguished three 
kinds of triads (major, minor, diminished) and four kinds of seventh chords [tetrads]. 
A long succession of charts describes increasingly more extensive ideas of tonal rela-
tions. In Figure 5.2, for example, we see twenty-four tones arrayed around C such 
that the vertical axis descends by fifths, while the horizontal axis traverses parallel 
major-minor key pairs. With regard to functional harmony, Weber emphasizes com-
mon tones between scales. That is, the dominant, subdominant, and relative major 
(minor) scales differ from that of the tonic by only one tone.3 He considers the princi-
pal scale degrees to be I, IV, and V. 
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Figure 5.2.  Left: Facsimile of Gottfried Weber’s schematic diagram of major-minor key 
relations (1817). D Major (D), for example, is the parallel major of D Minor (d) and the 
relative major of B Minor ([h] h in German terminology). Right: transliteration of the Fraktur 
(German script) in Weber’s diagram. 

In Weber’s more extensive charts of tonal relations (Figure 5.3), we find multiple oc-
currences of the same (or enharmonically equivalent) tones among the 104 items. 
Figure 5.3 shows only the first panel of a three-page chart relating all major and mi-
nor keys. Multiple instances of several individual keys occur in the full chart. 

 

Figure 5.3. By linking relative and parallel relations (with thirds on the horizontal plane and 
fifths on the vertical), Weber creates this schematic diagram of all major and minor keys. 
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5.1.3 Schoenberg’s Grids 
Weber’s chart of tone centers anticipates the schematic view of tonal regions given in 
Arnold Schoenberg’s Structural Functions of Harmony (1948). In the first instance, 
Schoenberg labels his regions according to their functional harmonic names (tonic, 
dominant, subdominant, etc.), making the key relations generic rather than specific 
(see Figures 5.4 and 5.5.). Schoenberg redrafted his own charts, substituting specific 
key names. He offers separate charts for major and minor tonalities. 

 

Figure 5.4. Arnold Schoenberg’s generic chart of tonal regions in the major mode (1948) is 
based on functional harmonic labels (D = dominant, T = tonic, SD = subdominant, etc.). 
Triads which are minor are indicated in lower-case letters. 

 

Figure 5.5.  Schoenberg’s generic chart of tonal regions in the minor mode (1948). The 
schematic view is much simpler than that for major. 

Schoenberg’s graphical view of the relationship of all relevant types of triads to a 
single tonal center implies degrees of distance from a tonic core. For Schoenberg, 
harmonic distance is computed in the first instance by the number of tones held in 
common by two scales. In the major mode, the dominant and subdominant are 
closely related to the tonic because (like the mediant and tonic minor) each holds six 
tones in common with it. The same proximities exist in the minor mode, but the 
chord qualities (major or minor) are reversed on the first six scale degrees. 
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5.1.4 Networks (Tonnetze) of Thirds and Fifths 

The Tonnetz, a lattice structure first conceived by the mathematician Leonhard Euler 
(1766), has given rise to many spatial configurations of tonal relations. As the struc-
ture was elaborated in the nineteenth century through the work of such figures as 
Oettingen (1866) and Riemann (1877), it focused on major thirds and perfect fifths, ei-
ther of which can be seen to provide a basis for circulating in tonal relations even 
though they also underpin important different results in the tuning of musical in-
struments. 

Many selected sets of tones (e.g., those required by the pentatonic, diatonic, and 
chromatic scales), varying by the number of items and the intervallic distances be-
tween them, can be defined within subspaces of the Tonnetz. Conversely, supersets of 
pitch-classes, such as all those occurring in a given work, could be traced in the same 
theoretical spatial structure. The Tonnetz strengthens the difference between major 
and minor thirds by providing them with separate positions in and propagation 
pathways through its lattice. [For examples, see Ch. 6.] 

The Tonnetz plays a role in many recent theories of tonal space, including those of 
Lewin (1987), Gollin (1998), Chew (2000), and Lerdahl (2001). The objectives of 
Lewin’s theories are discussed extensively elsewhere. Gollin (1998), in order to ex-
plore tetrachord classes, has extended the Tonnetz into three-dimensional space. 
While our models of three-dimensional space adapt surface topographies of two-
dimensional models on the surfaces of three-dimensional space, his are indigenously 
three-dimensional. 

Chew’s three-dimensional model (2000), which is derived from the Tonnetz, is the 
most intensely geometrical. Tones are lined up on a helix along the Circle of Fifths. 
The helix is circular in the x–y plane. It rises in the z direction. For a triad composed 
of three tones, she constructs the triangle whose vertices are provided by the con-
stituent tones of the triad. Then the triad is represented by the weighted center of 
gravity of the triangle. In the same way, a key is represented as the center of gravity 
of the triangle whose vertices are the points identified with the three main triads 
(tonic, dominant, and subdominant) of the key. Finally, we observe three nested spi-
rals—of tones, triads, and (major) keys—escalating in fifths. The Circle of Fifths, curl-
ing around the tube in Figure 5.8, can be identified with the innermost spiral of major 
or minor keys in Chew’s model. [For Chew’s own explanation, see Ch. 4.] 

For Lerdahl (2001), five nested circles in a plane represent a hierarchy of tone sets. 
From the outermost to the innermost circle the constituent entities are (1) the chro-
matic scale tones, (2) the diatonic scale tones, (3) the basic triad, (4) the basic fifth, and 
(5) the keynote identified with the center of the circles. Based on this representation, 
Lerdahl arrives at the concept of the basic space of a chord by accumulating its fun-
damental, basic fifth, chord notes, underlying diatonic scale, and chromatic scale. 
Lerdahl calculates distances between key regions as distances between respective 
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chords. He derives his measure from the combination of two criteria: (1) distance on 
the Circle of Fifths and (2) number of common tones. He considers the distance of the 
fundamentals separately on two circles of fifths. One of these represents the chro-
matic scale, the other the underlying diatonic scale. Instead of merely calculating the 
common chord notes, Lerdahl subtracts their basic spaces. 

5.1.5 Key Relationships: A Summary 
The choice of a geometrical space, the configuration of its shape, and the complexity 
which inheres in it necessarily imply closer connections between some sets of keys 
than others. Does the choice of geometries dictate and/or limit possibilities for im-
plied proximity? Or does the theory inherently dictate the choice of a shape? Every 
theorist proposes different criteria for evaluating key relationships. Those we men-
tion here are those we consider to have been the most original in their choices of ge-
ometries. 

Heinichen’s approach concentrates on properties of the tonic triad. The resulting cri-
terion for key proximity is the number of common tones shared by tonic triads. The 
three non-identical pairs of major/minor triads sharing two common tones can be 
identified with the keys of the relative major/minor, the parallel major/minor, and 
the key of the mediant.4 However, Heinichen’s Circle of Fifths can be linked to the 
Tonnetz by extending the horizontal axis of fifths [in just intonation], replacing each 
tone by the corresponding major key and its relative minor key, and equating g< and 
a=. 

Weber emphasizes the number of tones held in common by two scales. In the har-
monic-minor scale, according to his measure, the keys of the dominant, subdomi-
nant, and relative major are considered to be close to the tonic. Proximity is judged 
by the number of shared pitch-classes, which brings parallel major and minor keys 
into a close relationship, for he emphasizes that both keys share the same principal 
scale degrees (I, IV, and V). 

Schoenberg (1948) places keys into five classes based on their distance from the tonic. 
The classes are defined as (1) direct and close, (2) indirect but close, (3) indirect, (4) 
indirect and remote, and (5) distant. Class 1 requires a minimum of five common 
tones between the respective scales. Class 2 requires a minimum of three tones in 
common with the scale of the tonic. Criteria for the other three classes are multiple 
and dependent primarily on the complexity of modulatory pathways. 

5.2 Toroidal Models from Theory to Application 

5.2.1 Derivation of a Torus from Tonal Theory 
A toroidal model of key relations is implicitly contained in Weber’s charts of tone 
centers. To explain why the surface of a torus supplies a suitable composite model 
for major and minor keys, we reconfigure Weber’s chart (Fig. 5.3) in three stages. The 
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strip in Figure 5.6 is cut out from Weber’s chart, then rotated from a vertical to a 
horizontal orientation. 

In this schema, some keys and their enharmonic equivalents appear in multiple 
places. For example, G Minor appears in the upper row (Cell 5) in Figure 5.7 as well 
as in Cell 8 in the lowest row. In order to arrange a unique position for each key, we 
have to apply a spatial transformation. We do this by curling up the strip, forming a 
tube in order to unite the minor keys of the upper row with those of the lower one. 
When the two-dimensional strip in Figure 5.6 is curled as in Figure 5.7, single tonali-
ties (such as G Minor in Curls 1 and 2 and B Minor in Curls 2 and 3) become redun-
dant. This enables the formation of a tube, as shown in Figure 5.8. 

 

Figure 5.6. Strip of keys cut out from Weber’s chart of tone centers, and rotated to horizontal 
orientation. Compare with Figure 5.3. 

 

Figure 5.7. G Minor occurs as the relative minor of B= Major (most prominent row of Curl 
1) and as the parallel minor of G Major (top row of Curl 2). When the strip is curled as above, 
these can be overlaid. Since the phenomenon is general, the entire rightmost column of Curl 1 
can subsume the leftmost column of Curl 2, and likewise the corresponding columns of Curl 2 
and Curl 3, to produce a tube, as shown in Figure 5.8. 

 

Figure 5.8. Once the redundant positions are eliminated by compacting the curls into a 
single tube, the enharmonic equivalents at both ends of the tube can be wrapped horizontally 
to produce a torus. 
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Since each of the original strips is a continuum in which (as in the Circle of Fifths) the 
original tonality eventually recurs, the duplicated keys at both ends of the tube may 
be joined to form a donut (torus). In this three-dimensional model of key relations 
(which we call a ToMIR, which stands for a topographically-ordered model of key re-
lations), fifth-relations and third-relations are both preserved. 

5.2.2 Topology of a Toroidal Surface 
A toroidal surface can be parameterized in different ways. The most prominent are 
the following: 

• A four-dimensional representation: In this form the toroidal key arrange-
ment is first established in Krumhansl and Kessler (1982). Since a four-
dimensional space is hard to imagine, Krumhansl and Kessler use their find-
ing about the structure to further scale down the data to a two-dimensional 
representation (see Fig. 5.6). 

• A three-dimensional representation (Fig. 5.9). This is the geometrical object 
that one would usually think of when talking about a torus. For the sake of a 
homogeneous configuration, the two- or the four-dimensional representation 
should be used; see the mathematical remark below and Krumhansl and 
Kessler (1982: 345). 

 

Figure 5.9. A three-dimensional representation of key relationships constructed by 
connecting the upper and lower sides and the left and right sides. 

• A two-dimensional representation (cf. Figure 5.10). Each point of the tor-
oidal surface is uniquely determined by two angles in Figures 5.9 and 5.10. 
So another parameterization is given by the set [0, 2π r1] × [0, 2π r2] en-
dowed with the toroidal metric. 

MATHEMATICAL REMARK: The two- and three-dimensional representations are iso-
morphic to each other. They are not isomorphic to the four-dimensional version, but 
the induced topological spaces are homeomorphic. 
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Figure 5.10.  A two-dimensional representation of key relationships. 

5.3 Perceptual Models of Pitch Relationships 

5.3.1 Pitch-Class Usage Profiles 
How are tonal relations understood by perceiving subjects? Much recent literature 
and current research addresses this subject from a psychological perspective. Much 
of this work is conducted not at the level of articulation afforded by the systems of 
earlier centuries, in which modes and keys are carefully distinguished, but instead at 
the more general level of pitch-classes divorced from a necessary grounding in any 
particular key. 

By reducing enharmonic and octave equivalences to the values of (equally-tempered) 
chromatic tones within one octave, one can easily yield the twelve pitch-classes 
which correspond, in modern usage, to MIDI key numbers. In a 12-bin array, the 
notes of a C-Major scale would be represented by a 1 in the 1st (c), 3rd (d), 5th (e), 6th 
(f), 8th (g), 10th (a), and 12th (b) components, while a 0 is given for all other pitch-
classes. Such twelve-dimensional binary vectors can be considered pitch-class sets. 

In distinction to the set theory of Forte (1973), we seek to give usage weights for each 
pitch-class within the set. We know from widely reported histograms of the usage of 
tones within keys that in actual usage the tonic (Element 1) is most prominent, fol-
lowed by the dominant (Element 8), then by the major third (Element 5). 

In all tonal music, the first degree is the most prevalent. In the major mode, the sec-
ond most prevalent scale degree is the fifth, while in the minor mode it is the minor 
third. Non-diatonic notes have repeatedly been shown in incidence studies to be rela-
tively unimportant. Pitch-class preferences vary to some extent according to reper-
tory and other musical factors. Histograms of pitch usage may be correlated with 
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modal and scalar features (e.g., major or minor modes; whole-tone or other non-
diatonic scales). [See ¤zmirli’s study of pitch-class in relation to timbre, Ch. 1.] 

5.3.2 Probe-Tone Weightings 
By reducing pitch information to the base-12 level (cf. section 5.3.1 above), we can 
explore possible concordances with psycho-acoustical research. Probe-tone ratings 
(Krumhansl and Shepard 1979; Krumhansl and Kessler 1982) give a quantitative de-
scription of key that offers the possibility of relating statistical or computational 
analyses of music to cognitive psychology. Krumhansl (1990: 66–76) observes that 
each component in the probe-tone rating vector corresponds to the frequency of oc-
currence and the cumulative duration of occurrence of the corresponding pitch-class at 
metrically prominent positions in a tonal piece. 

Lerdahl’s basic space resonates with Krumhansl’s probe-tone ratings (1990) and to 
pitch-class profiles. To compare two chords, the difference between the correspond-
ing basic spaces is calculated. This is effectively the same as correlating the corre-
sponding pitch-class profiles. Key distances are calculated by comparing the corre-
sponding probe-tone ratings by correlation, Euclidean distance, or other dissimilari-
ties described in Purwins (2005). Our Euclidean scaling is shown in four dimensions 
in Figure 5.11. 

 

Figure 5.11. Probe-tone ratings are reduced to a four-dimensional Euclidean space by 
multidimensional scaling. The scaled points lie approximately on a sub-manifold formed by 
the cross product of two cycles (left graph: Dimensions 1 and 2; right graph: Dimensions 3 
and 4). 
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Key kinship based on the number of common pitch-classes appears in the graphical 
representation of results from Krumhansl’s probe-tone experiment (1990) in Figure 
5.12. Lerdahl (2001) combines arguments of this section to derive a measure for key 
region similarity. 

We perceive the harmonic graphing of probe-tones to incorporate both sets of major-
minor relations together with tonic-dominant-subdominant relations. 

Figure 5.12. The implicit two-dimensionality in the key visualization of Krumhansl and 
Kessler (1982). One linear axis corresponds to the Circle of Fifths, the other to the 
heterogeneous axes of parallel and relative third major/minor relationships. Here the key of the 
mediant (E Minor, relative to C Major) is considered to be adjacent to the tonic. 

The pitch-class material selected has a great impact on the style and character of a 
musical piece, e.g., the pitch-class material of the major, minor, whole-tone, or blues 
scales. Despite the complex inter-relationships between major/minor tonality and 
such musical features as voice leading, form, or beat strength, the frequency of occur-
rence of individual pitch-classes is a major cue for the percept of a tonality (Krum-
hansl 1990). 

5.4 Pitch Incidence and Audio Key-Finding 
Recent audio studies by Purwins et al. (2004a) involving a reduction of audio signals 
to a 12-tone mapping give provisional results for the selective use of particular pitch-
classes by certain composers. One aim is to arrive at an algorithm for automatic key-
finding in audio data. We developed the concept of the constant-quotient (CQ) pro-
file (Purwins et al. 2000b), which is a 12-tone vector similar to a probe-tone rating 
scale. A CQ calculation can be made quickly, has been shown to be stable over a 
wide range of recordings, and the profiles created are transposable. We have devel-
oped short- and long-term profiles and have created a CQ reference set. On the basis 
of this work, we have trained self-organizing maps (SOMs) on the reference values, 
then used these for audio-tone-classification purposes. 
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To test our approach, we investigated the type and amount of information captured 
in CQ profiles from complete but short pieces of piano music (Purwins et al. 2004b). 
The analyzed data set favors cycles of works which are ostensibly evenhanded in 
their distribution of keys. It includes pieces from Bach’s Well-Tempered Clavier (WTC), 
Books I (1722) and II (c. 1740), Chopin’s Préludes Op.28 (which also consist of one 
piece in every key, 1838–39), Alkan’s Préludes Op.31 (exploring all major and minor 
keys, 1847), Scriabin’s 24 Preludes Op.11 (1888–96), Shostakovich’s Op.34 (1932–33), 
and the fugues of Hindemith’s Ludus tonalis (consisting of one fugue for each pitch-
class, purposely avoiding a clear use of major or minor; 1942). We employ supervised 
and unsupervised machine-learning techniques. 

To examine divergent performance profiles, we have evaluated different perform-
ances of the same works. Our database for the audio work currently contains 226 CQ 
profiles. For the Well-Tempered Clavier, we have profiled the performances of Samuil 
Feinberg and Glenn Gould. Chopin’s Préludes Op.28 were profiled from perform-
ances by Alfred Cortot and Ivo Pogorelich. Profiles of Alkan’s 25 Préludes Op.31 are 
derived from performances by Olli Mustonen. Scriabin’s Preludes Op.11 have profiles 
obtained from performances by Scriabin himself on a Welty-Mignon piano disk as 
well as from three other pianists. The twelve fugues in Hindemith’s Ludus Tonalis are 
performed by Mustonen. 

We have mapped tonal data to both scale degrees and to pitch-classes, according to 
the nature of the question posed. The supervised approach attempts to identify com-
posers from automatically classified profiles. In the case of Bach, we find that all 
pitch-classes are significant, while in Chopin’s piano music there is a heavy reliance 
on the third, sixth, and seventh of the twelve pitch-classes. For Shostakovich, the 
third pitch-class is singularly important. Scale-degree profiles for Bach, Chopin, and 
Hindemith are shown in Figure 5.13. 

Unsupervised methods provide (1) a cluster analysis, leading to one major and one 
minor cluster, and (2) a visualization technique, Isomap, which reveals in its two-
dimensional representation some additional harmonic structure apart from major-
minor dualities. Overall, we are astonished by the amount of information found in 
the profiles. All of this is retrievable in a straightforward manner from any digital re-
cording. It is important to indicate the performer, since the cumulative duration of 
individual pitches varies by performer. 
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Figure 5.13. Profiles by scale degree. Transposed constant-quotient (CQ) profiles for selected 
pieces from Bach, Chopin, and Hindemith. Scale degrees are shown on the horizontal axis. In 
Chopin and Bach the peaks are related to the diatonic scale and to probe-tone ratings. 
Hindemith de-emphasizes the diatonic notes. 

On a general level, pitch-class usage in tonal repertories can be skewed by composer 
preferences for particular keys. This is evident from ordinary bibliographical infor-
mation. We can see significant differences in the keys used by such composers as 
Vivaldi, Bach, and Chopin (Figure 5.14). Part of the effect we see in this figure comes 
from differences of instrumental medium—a predominantly string ensemble in 
Vivaldi, a mixture of harpsichord and organ in Bach, and predominantly modern pi-
ano in Chopin. Such associations may reflect the influences of timbre and mechanical 
convenience on pitch choice. 

In Figures 5.15 and 5.16 we show this variability in the preludes in major and minor 
keys in Book I of the Well-Tempered Clavier. In dealing with audio data, it is also im-
portant to compute total durations for pitch-classes (and/or scale degrees) to ac-
commodate performer-specific variations in treating tempo and duration. 
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Figure 5.14.  Profiles by relative major/minor groupings for key preferences in works by 
Vivaldi, Bach, and Chopin. In these graphs relative major/minor pairs are given a single 
value. 
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Figure 5.15.  Constant-quotient profiles ordered by pitch-class for major-key preludes ( as 
performed by Glenn Gould ) from Book I of Bach's Well-Tempered Clavier. It can be observed 
that most profiles can be generated from the combination of a big peak centered on the first 
scale degree and a small peak on the (major) third degree. 
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Figure 5.16.  Constant-quotient profiles ordered by pitch class for minor-key preludes (as 
performed by Glenn Gould) from Book I of Bach’s Well-Tempered Clavier. 

If we look at the fugues of Book I of the Well-Tempered Clavier, we find that the Circle 
of Fifths which emerges from our profiles is not so regular as in drawings by theo-
rists. In terms of sounding time (each pitch-class multiplied by the accumulation of 
all its durations), the geometrical correspondence is also not so close as one would 
anticipate (Figure 5.17). 
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Figure 5.17. Distributions by key and pitch-class compared. Individual plots for the 
distribution and elapsed duration of (a) keys and (b) pitch-classes in fugues of Book I of Bach’s 
Well-Tempered Clavier. 

5.5 Other Applications of Toroidal Models 
We have explored many areas of application for the approach described above. Here 
we mention briefly several procedures used in the visualization of complex relation-
ships and their applicability to the study of key and pitch relationships in tonal mu-
sic. Many more will be found in our recent publications. 

5.5.1 Self-Organizing Maps 
By means of the self-organizing feature map, a simple binary notion of close and dis-
tant keys induces geometric topologies consistent with psychological experiments 
and writings in music theory. In addition to the assumptions made by Krumhansl 
and Weber, we can also model other notions of proximity. We could, for example, as-
sign different real-distance values for the keys of the dominant or of the parallel and 
relative minor/major. In comparison to Lerdahl (2001), the model presented here is 
non-hierarchical and much simpler. 

Our learning algorithm (Blankertz et al. 1999b) uses Kohonen’s idea of establishing a 
topology-preserving map in a new and unusual manner. In the usual self-organizing 
map (SOM; Kohonen 1982), the objects under investigation are characterized by fea-
ture vectors in a high-dimensional space. The vectors are assumed to lie approxi-
mately on a low-dimensional sub-manifold outlined by the given metric on the for-
mal neurons (after successful training). The correspondence between neurons and 
objects is established by the self-organizing learning process. 

In our modified SOM, each neuron represents exactly one object in a fixed a priori 
correspondence. In the learning process, a suitable placement of the neuron vectors is 
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to be found in a stipulated metrical space that realizes a given neighborhood relation 
on the neurons5. The particular assumptions about proximity made by our applica-
tion are coded in the function and affect neighboring functions, which results in the 
updating of weights and the establishment of a “winning neuron.” It is handled 
separately in order to approximate the shape of a triangle. 

5.5.2 Neuroscientific Correlates of Key Relations 
Both the SOM and the topographic ordering map can be used to map a set of formal 
neurons to a set of input vectors by selecting an input vector with minimum Euclid-
ean distance to the given neuron vector. Usually, an SOM displays a direct visualiza-
tion of this mapping. 

To get a smoother display, we extend this mapping to the whole manifold that is out-
lined by the neurons by means of interpolation. That is, we associate with each input 
vector a possibly unconnected region on the manifold. In simulations, that manifold 
is a toroidal surface and there are always 24 input vectors, each representing a major 
or minor key. We use 21 × 12 formal neurons supplied with a toroidal metric. Neu-
rons are arranged in a mesh, gluing together opposite borders. A point is colored 
black if the distance (of its projection) to the nearest input vector is not sufficiently 
smaller than the distance to the second nearest. So each region gets a black border 
whose thickness corresponds to uncertainty, in a relative measure. The placement of 
the key name is determined by the position of the neuron with minimum distance to 
the input vector that corresponds to that key. 

In an fMRI study, using the representation of a tone center parameterized by two 
toroidal angles on the ToMIR, Janata et al. (2002) find evidence for localizing brain 
activity related to tone-center modulation. Textbook-like modulations, synthesized 
with FM-clarinets, are played to the subjects. Two toroidal angles on the ToMIR seem 
to represent tone centers preserving sufficient information to identify voxels that are 
sensitive to tone-center transitions. Currently, non-invasive brain-imaging techniques 
do not yet seem able to indicate whether voxels that are sensitive to distinct tone cen-
ters are spatially arranged in the brain in a certain manner (e.g., in a torus) or in any 
other (e.g., more dynamic) configuration. An actual neural correlate of a dynamic to-
pography may not give equal space to all tone centers, since tonic and dominant will 
occur more often than remote key regions. Also, modulation from one scale degree to 
another one is not usually matched by the reverse transition. That is, the harmonic 
progression I–vi occurs more often than that of vi–I. 

Is there a neurobiological correlate of tone-center processing? Most auditory models 
cover only roughly the first stages of auditory processing. The topographic principle 
in the SOM (Kohonen 1982) corresponds to tonotopy (Schreiner and Langner 1988) in 
the auditory domain. Because it is considered as a model of the cortex, it is an ex-
treme simplification, simulating only topography. We think more knowledge about 
neural processing of sound is needed to make a well-grounded hypothesis on the ex-
act representation of tone centers in the cortex. 
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5.5.3 Correspondence Analysis 
In our efforts to show the emergence of the Circle of Fifths and of a ToMIR from CQ 
profiles extracted from Bach’s Well-Tempered Clavier and Chopin’s Préludes (Purwins 
et al. 2000b, 2004b, 2005), we have found that correspondence analysis and Isomap 
are useful substitutes for an SOM because they serve as metaphors for cortical or-
ganization. 

We became involved with correspondence analysis in order to embed distinct musi-
cal entities such as tones, triads, and keys in a common plane or space, in order to 
make their relationships graphically obvious. In Purwins et al. (2004b), correspon-
dence analysis was used to investigate the mutual relationships between keys and 
pitch-classes. The embedding of keys and pitch-classes can then be displayed in bi-
plots. With a dissimilarity at hand, keys represented by their probe-tone ratings can 
be visualized. We give an example from Book I of the Well-Tempered Clavier in Figure 
5.18. 

 

Figure 5.18.  Overlaid plots of key and pitch-class usage in the fugues of Bach’s Well 
Tempered Clavier, Book I.  Cf. Figure 5.17. 

5.5.4 Toroidal Simulations 
We simulate the toroidal configuration from tone centers considered to be close to 
each other according to Weber. Those are the dominant, subdominant, relative, and 
parallel kinships. For the topographic ordering map, the appropriate set of close rela-
tions is  

{ }...,E-c f,-c g,-c c,-C a,-C F,-C ,GC:
1

b−=V  
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where the dots stand for analogous relations between keys with different tonic key-

notes. Even in this setting, where the set V 1 is the only information given about the 
structure of inter-key relations, the algorithm ends up with the arrangement depicted 
in Figure 5.19. This simulation resembles a global arrangement of tone centers, like 
that which evolves in Weber’s chart, but is not predetermined. 

Figure 5.19.  Arrangement of keys evolving from sets of close relationships by the 
topographic ordering map. Relationship V 1 resembles the local structure of Weber’s chart of 
tone centers (1817). Compare previous figure. 

For comparison, let us consider relations between tone centers resulting from maxi-
mization of common tones between adjacent scales as well as maximizing common 
tones between their respective tonic triads. The tonic’s kin, the dominant, subdomi-
nant, relative, and parallel, are now additionally joined by the mediant. Under this 
stipulation, E Minor is as well an immediate neighbor of C Major, as are F Major, G 
Major, and A Minor. To integrate the strengthening of the mediant relation, we ex-
pand the set of close relationships to  

This is consistent with Krumhansl’s probe-tone ratings (1990: 39, 46) and shows a 
strong correlation between the tonic and its mediant (cf. Figure 5.12). Of course, the 
small amount of information that is used in this simulation is not sufficient to pro-
duce finer distinctions. In Krumhansl’s arrangement, A Minor, for example, is closer 
to C Major than E Minor. 

In our color illustrations, Scriabin’s color-mapping has been used to good effect, for 
example, in the depiction of Chopin’s Préludes Op.28 as performed by Alfred Cortot 
(1932–33). 



 

94  TONAL THEORY FOR THE DIGITAL AGE 

5.5.5 Studies in Music Theory and Perception 
The curling of Weber’s chart to form a torus can be subtly related to tone-center 
modulation paths and key symbols. For example, the key architecture of Wagner’s 
Parsifal represents a spiritual and physical journey from A= Major to A= Major (Ler-
dahl 2001: 119 ff; Purwins 2005). The path from Earth to Heaven (vertical axis) is by 
rising perfect fifths/descending major fourths (vertical axis), while from Evil to Good 
(horizontal axis) it is by rising major sixths/ descending minor thirds (horizontal 
axis). See Figure 5.20. 

 

Figure 5.20.  The intersection of the Good-Evil and Heaven-Earth axes (all initially in A= 
Major) at D Major in the overall harmonic plan of Richard Wagner’s Parsifal, according to 
our method of analysis. 

Physically, A= Major has a unique location on the ToMIR. Conceptually, A= Major 
has different meanings associated with four separate positions on Weber’s chart. 
What is most significant in Wagner’s plan, when considered in the context of Weber’s 
extended chart, Parsifal depicts in tonal space the cross of spiritual journey, with a 
convergence of both paths at D Major (the tritone of A=). The tritone interval signi-
fies the wound of Amfortas. 

Representations of key regions can be used to track paths of modulations, toniciza-
tions, and applied dominants within a piece (cf. Purwins et al. 2000b, Purwins 2005, 
Toiviainen 2005, Lerdahl 2001, Cohn 2007). Toiviainen (2005) shows images of instan-
taneous tonal activation. In addition, he uses self-similarity based on SOM activa-
tions for visualizing the tonal structure of the piece [cf. Ch. 10]. 
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5.6 Discussion and Conclusions 
The central result of this research is that the hypothesis of psycho-physical parallel-
ism for the topographic ordering map of tonal harmonic (interkey) relations (TOMIR) 
is supported in a generalized form, maintaining a comparable level of biological 
relevance. When our operational model for the acquisition of a mental sense of tonal 
harmonic relations is exposed to pieces of tonal music, a Circle of Fifths and a homo-
geneous toroidal configuration of keys evolve. The validity of our hypothesis is 
demonstrated on a broad variety of samples (actual recordings of performed music 
by Bach and Chopin) as opposed to a limited number of cadential patterns.  

The model's basic assumptions are reduced to (1) logarithmic frequency resolution, 
(2) contextual formation of the semantics of tone-centers (through the application of 
the Gestalt principle of proximity in algorithms such as Isomap and correspondence 
analysis), (3) identification of octave components based on the projection of pitch 
onto the pitch-class circle of the helical model, and (4) the consideration of semi-
tones.  Overall, fewer assumptions are needed to verify our hypothesis than in previ-
ous approaches: the toroidal structure is not stipulated in the architecture. The neu-
romimetic model and the CQ-model are of comparable neuromimetic relevance.  

Surprisingly, it appears that the specific details of the auditory process, as imple-
mented in an auditory model, are not particularly relevant for the cognitive devel-
opment of a sense of tonal harmonic relations.  Although one of the main functional-
ities of Meddis' hair-cell model (1988) is the response to onset, sustain phase, and off-
set, these features appear to be of minor relevance for the establishment of a sense of 
overall tonal content. Since for autocorrelation the biological plausibility is ques-
tioned, we use CQ-profiles, without loosing confirmed biological relevance. CQ-
profiles are consistent with the Weber-Fechner rule of logarithmic perception of fre-
quency and they reveal high coherence with probe tone ratings in music psychology 
(Purwins et al. 2000b).  

Toroids offer a powerful model for the analysis of key relationships in tonal music 
and in its performance. The toroidal model is particularly useful in its ability to sub-
sume both the kinds of tonal relationships proposed by music theorists, based on in-
tervals and their combinations in chords, and by psychologists in recent experimen-
tal literature on music perception, where it is based largely on pitch-class ratings. 

In the latter connection, we find that audio mapping of data of high-dimensionality, 
when reduced to one dimension, can provide an adequate basis for practical dis-
criminations between performances. Many areas of application can benefit from the 
coordination of data representations bearing on the construction of this spectrum of 
more specific and more general definitions of pitches and keys. All circular models 
imply through their design particular interpretations of key proximity. The details of 
relative relationships will vary according to the particular graphical configuration of 
the constituent items. 
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 Notes 
1. The use of the helix to explain pitch relations can be traced back at least as far as Drobisch 
(1855). 

2. For details on the early history of tonal music theory, see Werts (1983). Werts’ analysis of 
modulations in a large corpus of music also evaluates modulatory goals and finds that modu-
lations to dominant, subdominant, parallel, and relative keys are the most common. 

3. On Weber’s theoretical framework, see Saslaw (1992), who in recent writings has linked his 
geometrical approach to concepts in cognitive musicology. 

4. We do not differentiate between a key and a tone center, but note the variations in the usage 
of Schoenberg (1948) and Lerdahl (2001), who refer to key regions or key areas. In Lerdahl’s 
terminology, we reduce key to Level D of the basic space (Lerdahl 2001: 47, Figure 2.4). 

5. Our algorithm generalizes to the case of arbitrary neighborhood degrees dK(i,j)∈R > 0 
in a straightforward manner for real numbers R. 
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