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 Abstract 
The relation between metric and tonal structures is a controversial subject in music 
theory. Brahms’ music is well known for both its metric and harmonic ambiguities. 
According to David Lewin and Richard Cohn, Brahms’ Capriccio Op. 76, No. 8 is 
characterized by a deep affinity between metric and tonal processes. We reconsider 
the study of this relation from the perspective of independent mathematical models, 
namely Inner Metric Analysis and the Spiral Array, to describe the metric and tonal 
domains. Inner Metric Analysis investigates the metrical structure expressed by the 
notes based on the active pulses of the piece rather than notated bar lines. In the case 
of the Capriccio, segments of metric characteristics similar to Lewin’s and Cohn’s 
findings are obtained. The Spiral Array Model consists of a three-dimensional reali-
zation of the Tonnetz that embeds higher-level tonal structures in its interior. When 
applied to the Capriccio, this model segments the piece into tonally stable sections 
that correspond to Lewin’s and Cohn’s observation. The comparison of the results of 
these models provides further evidence of the close relation between harmony and 
meter in Brahms’ Op. 76, No. 8 proposed by Lewin and Cohn.  

 
 Tonal Theory for the Digital Age (Computing in Musicology 15, 2007), 138–171. 
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8.1 Background to Brahms’ Capriccio Op. 76, No.8 

8.1.1 Meter and Harmony in Music Theory 
The description of the different forms of relations between metric and pitch processes 
is a challenging topic in music theory. According to Caplin (1983), most important 
theorists of the 18th and 19th centuries recognized a significant relationship between 
tonic harmonic function and metrical accentuation, but have little consensus on the 
nature of this relationship. Lewin (1981) and Cohn (2001) find a concrete and close re-
lationship in Brahms’ Capriccio Op. 76, No. 8. Brahms’ compositions are character-
ized by complex metric processes implying different forms of hierarchies, displace-
ments and ambiguities as discussed, for instance, in Schoenberg (1976), Epstein 
(1987), Frisch (1990), and Volk (2004). 

This paper discusses the relation between meter and harmony in the piece from a dif-
ferent perspective. We apply the mathematical model of Inner Metric Analysis 
(Fleischer, Mazzola and Noll 2000, Nestke and Noll 2001, Mazzola 2002, Fleischer 
2002, Volk 2004) and the mathematical model for tonal spaces of the Spiral Array 
(Chew 2000, 2006a, 2006b) to the Capriccio. The comparison of the results offers a 
new perspective on Lewin’s (1981) and Cohn’s (2001) findings about a deep affinity 
between meter and harmony in this piece. 

8.1.2 Lewin’s Analysis of Brahms’ Op. 76, No.8 
Lewin (1981) determines that the Capriccio contains, in the first 15 bars, the following 
metrical states: 6/4, 3/2 and 12/8. These metrical states are obtained by extracting 
from the left hand the lowest pitch of each arpeggio (see Figure 8.1) and grouping 
these notes according to the corresponding metric hierarchy of 6/4, 3/2 and 12/8 
(see Figure 8.2). Lewin does not consider the complex metric structure of the right 
hand in his analysis. Each metrical state is associated with different sections as 
shown in Figure 8.2a. Bars 1–2 and 5–8 are assigned as 6/4 (red region), Bars 3–4 as 
3/2 (blue region) and Bars 9–13 as 12/8 (green region). Furthermore, each region cor-
responds to a harmonic function: “tonic” (red), “subdominant” (blue) and “domi-
nant” (green). Tonally, the example is largely divided into two halves: F (Bars 1–8) 
and e (a dominant-substitute key in Bars 9–15). Lewin assigns the last two bars as 
12/8 but perceives in addition a metric modulation back to 6/4 within these bars, in-
dicated with the light green color. Starting from this coincidence, Lewin develops 
mathematical arguments supporting a deep affinity between harmony and meter. 
Cohn extends Lewin’s findings and characterizes the different metrical states by su-
perimposed levels of pulses or motion that have conflicting periods. 
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Figure 8.1.  Notes of the left-hand part of Brahms’ Capriccio Op. 76, No. 8 considered for the 
metric analysis by Lewin (marked with a dot), score reproduced from the first edition, 
published by Simrock in 1879. Courtesy of the McCorkle Brahms Cataloguing Project at the 
Department of Music, University of British Columbia. 
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Figure 8.2a.  Metric and harmonic analysis of the Capriccio in Lewin (1981). 

 

 

Figure 8.2b.  Metric and harmonic segments of the Capriccio according to Lewin (1981). 
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8.2 Computational Models for Meter and Harmony 

8.2.1 A Brief Literature Review 
Computational models that assign a metric interpretation to a given piece of music 
are based on very different methods, such as rule-based approaches (Steedman, 1977; 
Longuet-Higgins and Lee, 1987; Povel and Essens, 1985), probabilistic models (Raph-
ael, 2001), or oscillator models (McAuley, 1994; Large and Kolen, 1994; Large, 2000; 
Eck, 2002). Some of these models search for the main beat (Povel and Essens, 1985) 
while others search for the entire metric hierarchy (Temperley 2001, Toiviainen and 
Eerola 2004). The majority of computational metric models do not consider harmonic 
events for the assigning of the metric interpretation (an exception is Temperley, 
2001). Since pitch information is mostly ignored, these models operate very differ-
ently in comparison to Lewin’s analytic approach to the Capriccio, which is pitch-
based. Furthermore, the relation between harmony and meter has been hardly inves-
tigated by computational models. 

Similarly, computational models that assign a tonal interpretation to a given piece 
are based on diverse methods. Models for tonal recognition include Longuet-Higgins 
and Steedman’s (1971) shape-matching algorithm based on the harmonic network, 
Krumhansl and Schmuckler’s probe tone profile-matching method through computa-
tion of a correlation coefficient (see Krumhansl, 1990), Temperley’s extensions on the 
K-S approach by modifying the original templates (1999) and by introducing Bayes-
ian reasoning (2002), and Chew’s (2001) center-of-effect generator (CEG) method that 
uses a nearest-neighbor search within the Spiral Array representation. Key-
recognition methods form a critical step in systems for more complex tonal analysis, 
including local key finding (Schmulevich and Yli-Harja 2000, Toiviainen and Krum-
hansl 2003, and Sapp 2001), audio key finding (see, for example, Chuan and Chew 
2007, Gómez 2006, and Izmirli 2005), complete tonal analyses (Temperley 2002), tonal 
segmentation (Chew 2004, 2006a), and the generating of tree structures for tonal 
groupings (Rizo and Iñesta, 2005). 

8.2.2 Inner Metric Analysis 
Inner Metric Analysis is based on the idea of studying the meter of a work by consid-
ering all active pulses in a piece, not unlike Cohn’s analysis of the Capriccio. These 
different levels of motion, pulses, or layers have been used in different music-
theoretic approaches for the description of meter, such as by Yeston (1976), Lerdahl 
and Jackendoff (1983), and extensively by Krebs (1999). Inner Metric Analysis inves-
tigates the inner metric structure of the notes inside the bars, which is opposed to the 
normative state associated with the bar lines called outer metric structure. The model 
assigns metric weights to the notes that are generated from the superposition of the ac-
tive pulses in the piece. A correspondence between the outer and inner metric struc-
tures results in what Fleischer (2002) terms metric coherence. The application of the 
model to Brahms’ four symphonies in Fleischer (2003) and Volk (2004) has shown 
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that Brahms’ music is often characterized by a lack of metric coherence, providing an 
explicit description of the discrepancies and ambiguities stated, for example, in 
Frisch (1990) and Epstein (1987). 

We now give a brief introduction to the model; the details have been covered in 
Fleischer (2003) and Volk (2004). The general idea behind the model is a search for all 
pulses (chains of equally spaced events) of a given piece and the assigning of metric 
weights to each note of the piece based on the pulses that coincide at the note. The 
pulses considered by the model are based on note onsets. Figure 8.3 shows an exam-
ple listing these pulses for measure 13 of the right hand of the Capriccio. The first 
row O under the notes shows the projection of the notes onto the set of all onsets. 
Within this set O we determine the pulses of the piece as subsets of equally spaced 
onsets that are maximal. A subset is maximal if it is not a subset of another subset 
consisting of equally spaced onsets. These maximal subsets are called local meters. 
Figure 8.3 lists all four local meters A, B, C and D of this example, indicated by dark 
circles. The local meters A and B consist of four onsets each, while C and D contain 
three onsets each. We call the number of onsets minus 1 the length k of a local meter, 
hence A and B have the length k=3, and C and D the length k=2.  All local meters 
have different periods. A has a period of three, B has a period of one, C a period of 
two and D a period of four (as multiples of eighth notes). The triangles show the ex-
tension of each local meter throughout the entire piece with its specific period and 
phase. The extension continues a pulse after it has stopped until the end of the piece, 
and also backwards to the beginning of the piece. 

 

Figure 8.3.  The set O of all onsets and all local meters of Bar 13 in the right hand. 

Inner Metric Analysis makes the distinction between two different weights, namely 
the metric and spectral weights that consider the local meters and the extension of 
the local meters respectively. The metric weight is based solely on the local meters 
(the dark circles in Figure 8.3), while the spectral weight considers in addition the ex-
tension of each local meter (all dark circles and triangles in Figure 8.3). For each onset 
o∈O, the metric weight Wl,p(o) sums the power function kp of the length k of all local 
meters m that have a minimum length l and coincide at o: 
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Wl,p (o) = k p

{m∈M (l ):o∈m}
∑  

The spectral weight SWl,p(t) considers in addition the extension of all local meters that 
coincide at t: 

SWl,p (t) = k p

{m∈M (l ):t∈ext(m )}
∑  

Figure 8.4 displays the results for the short example in Figure 8.3 using different val-
ues for the weighting parameter p. The x-axis represents the time axis; the back-
ground marks the notated bar lines. The higher the line, the higher the corresponding 
weight. While both the metric and spectral weights using the parameter p=2 do not 
exhibit a regular pattern, the spectral weight SW2,4 in the rightmost picture is charac-
terized by two different weight layers. The highest layer is built upon every third 
eighth note in this example. Hence in this short example, the inner metric structure 
differs from the outer metric structure of the accent hierarchy of the notated 6/4, 
which has large metric accents on the first and fourth quarter notes of each bar. This 
is not a surprising result, however, given the numerous syncopations in this excerpt. 
Increasing the value of p leads, at least for the spectral weight, to the emergence of 
layers. We will discuss the different contributions of the metric and spectral weights 
to segmentation processes in the metric domain below. 

W2,2   SW2,2     W2,4   SW2,4  

Figure 8.4.  Metric and spectral weights for Bar 13 using different parameters p. The first 
two pictures from left display the metric and spectral weights for l=p=2; the last two pictures 
display the metric and spectral weights for l = 2 and p = 4. 

8.2.3 The Relation between the Inner and Outer Metric Structures 
Inner Metric Analysis describes the inner metric structure generated by the notes in-
side the bar lines without considering the outer metric structure associated with the 
time signature. The previous example demonstrated that these structures may differ 
from each other. Figure 8.5 gives an example in which the weight layers of the inner 
metric structure coincide with the typical hierarchical layers of the outer metric struc-
ture. The spectral weight SW2,2 of the first movement of Beethoven’s Sonata Op. 31, 
No. 1, in 2/4 meter, shows four distinctive layers. The spectral weights on the first 
beats of all bars build the highest layer, while those of the second beats of all bars 
create the second highest layer. The weights on the second and fourth eighth notes 
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build a lower layer, while those on the weak sixteenth notes in between create the 
lowest layer. 

 

Figure 8.5.  Excerpt from the spectral weight SW2,2 of the first movement of Beethoven’s 
Sonata Op. 31, No.1 (time signature: 2/4). 

Such a correspondence between the inner and outer metric structures reflects the fact 
that the metric structure of the notes respects the normative state of the bar lines. We 
call such a relationship metric coherence (Fleischer [Volk] 2003). One might expect 
that such a relation is the normal case. However, music theorists have discussed 
many examples where the structure implied by the notes contradicts the abstract grid 
of the bar lines. 

The first movement of Schumann’s Third Symphony, in 3/4 time, is one such well-
known example characterized by a discrepancy between the inner and outer metric 
structures (see Epstein 1987 and Krebs 1999). The excerpt from the spectral weight of 
the first violins in this movement in Figure 8.6 shows weight layers that do not coin-
cide with the metric hierarchy implied by the notated bar lines. In every other meas-
ure, the highest metric weight is not located on the first beat, but on the second. 
Hence metric coherence does not occur in this example. The model thus confirms Ep-
stein’s and Krebs’ observations about a discrepancy between the notes and the ab-
stract grid of the bar lines. Lewin’s analysis of Brahms’ Capriccio points to another 
example characterized by complex metric processes that do not necessarily coincide 
with the notated time signature. We will investigate this phenomenon in detail in 
section 8.3. 

 

Figure 8.6.  Excerpt from the spectral weight SW2,2 of the first violins in the first movement 
of Schumann’s Third Symphony (time signature: 3/4). 

8.2.4. Global vs. Local Structures in Inner Metric Analysis 
This section provides the basis for the segmentation processes using Inner Metric 
Analysis to be introduced in Section 8.2.6. Lewin’s analysis of the Capriccio identifies 
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different segments of tonal and metric stability in the first 15 bars of the piece. The 
application of Inner Metric Analysis to the piece in section 8.3.1 hence focuses on the 
determination of metrically stable segments. 

Segmentation processes based on tonal structures have been investigated in the mu-
sic theory literature to a much greater extent than those dealing with the metric do-
main (see, for example, Temperley 2001, Chew 2004, and Honingh 2007). Different 
tonal keys often characterize the different thematic sections of a sonata, and hence 
can be indicators of significant boundaries. It is important to note that areas of transi-
tion could exist wherein no clear tonality can be found. 

In Chew (2004), the Argus method was introduced as a way to track degrees of 
change in the tonal context using two consecutive windows of musical information. 
Segmentation boundaries are then detected as statistically significant peaks in the to-
nal distance function. This method will be discussed in greater detail in Section 8.2.5 
before it is employed in the analysis of the Brahms Capriccio in Section 8.3.2. 

Similarly, we search in the metric domain for segments characterized by stable metric 
layers, having similar weight profiles, using Inner Metric Analysis. However, not all 
pieces are characterized by metric weights with stable layers (see Fleischer 2003), 
hence for pieces with no stable regions, other criteria for segmentation processes 
have to be defined. In this article we consider only cases where regions of stable lay-
ers occur. 

Inner Metric Analysis of an entire piece considers all possible relations between all 
onsets of the piece, even the relation between the very first and very last onsets. The 
analysis of isolated segments may therefore result in different metric characteristics, 
compared to the analysis of a segment as part of the entire piece, if relations to onsets 
outside of this segment have a high influence on the metric weight within the seg-
ment. Our search for stable segments starts from the analysis of the entire piece using 
the full amount of metric information, and proves the inner stability of the segments 
in a second step by analyzing the isolated segments. As we will see later, adjustments 
of the boundaries of segments may be necessary within this second step. 

The metric and spectral weights contribute differently to our segmentation proce-
dure. The spectral weights of Figures 8.5 and 8.6 show very constant weight layers 
throughout the entire piece, which is frequently a characteristic of the spectral 
weight. The metric weight is in general more sensitive to local changes of the metric 
structure and reacts with changes in the weight layers. Hence, the extension of all lo-
cal meters in the spectral weight approach allows for the global characterization of 
the predominant metric structure of a piece or a segment; the metric weight reflects a 
more local perspective, and can determine boundaries between different segments. 

Beethoven’s Sonata Op. 31, No. 1 gives an example of the different behaviors of the 
metric and spectral weights concerning robustness and sensitivity. Figure 8.7 shows 
four excerpts from the metric weight profile of the first movement of Beethoven’s 
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Sonata Op. 31, No.1. While the spectral weight in Figure 8.5 is characterized by four 
different layers, the number of layers in the metric weight changes throughout the 
piece. Only the excerpt from the second theme in the exposition, profile given in Fig-
ure 8.7b, shows different layers in the last four bars (first beats of the bars, second 
beats of the bars, second and fourth eighth notes, sixteenth notes in between). The 
excerpts from the first theme in the exposition (Figure 8.7a) and the recapitulation 
(Figure 8.7d) are characterized by large weights on the first beats of the bars, fol-
lowed by the weights on the second beats in some bars. Furthermore, the metric 
characteristic of the first theme in the recapitulation is different from the exposition 
in that the beginnings of the bars reveal a hypermeter of two bars due to greater met-
ric weights on the first beat of every second bar. The third excerpt (Figure 8.7c) is 
characterized by large metric weights on the first beats of all bars as well, but the 
second beats do not generate a stable second layer, since in many bars the third or 
seventh eighth note tends to converge on the weight of the second main beat. Hence, 
the number of weight layers for the metric weight changes throughout the piece, in 
contrast to the spectral weight, which exhibits constant layers. 

a)    b)  

c)    d)  

Figure 8.7.  Excerpts from metric weight W2,2 of the first movement of Beethoven’s Sonata 
Op. 31, No. 1: (a) Bars 1–7 (first theme in exposition), (b) Bars 64–74 (second theme in expo-
sition), (c) Bars 133–43 (development), and (d) Bars 200–7 (first theme in recapitulation). 

Changes in the layers of the metric weight can indicate meaningful segments in the 
piece. In comparison to tonal segmentation, segmentation in the metric domain has 
been much less extensively studied. Existing research focuses on finding the main 
beat or determining the overall metric hierarchy. Little effort has been spent on de-
vising strategies for determining the local time structure or segmentation boundaries. 
In the following paragraphs we show further examples of metric weights that illus-
trate how the change in the metric weight layers corresponds to segments assigned 
by music theorists. 
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Figure 8.8.  Excerpt from metric weight W2,2 of the first violins in the first movement of 
Brahms’ Third Symphony (Bars 3–21). 

Considerable change in the metric weight layers occurs in the opening of the first 
movement of Brahms’ Third Symphony, notated with a 6/4 meter. Figure 8.8 gives 
an excerpt for the beginning of the metric weight of the violins (see score in Figure 
8.9). Bars 1–4 of this excerpt (which correspond to Bars 3–7 of the score) do not ex-
hibit the typical 6/4 metrical hierarchy, with large metric weights on the first and 
fourth quarter notes. Instead, the first, third and fifth quarter notes are assigned large 
weights. 
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Figure 8.9.  The violin part of the first movement of Brahms’ Third Symphony (Bars 3–21). 
The violins start the theme in Bar 3 of the score, hence the first bar of the metric weight 
corresponds to the third bar in the score. Our references to bars within the metric weight 
assume Bar 1 for the first analyzed bar. 

These peaks correspond to the metric profile characteristic of a 3/2 meter. Beginning 
in Bar 7 of the excerpt (and more evident in Bar 9), large weights are located on either 
both the first and fourth beats, or only on the fourth beat, as is typical for a 6/4 me-
ter. Starting at the second half of Bar 8, a considerable shift in the highest layer to-
ward larger weights is introduced, and a correspondence to a 6/4 metric profile be-
comes evident. This result obtained from the metric weight corresponds to an obser-
vation stated by Walter Frisch: 
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The main theme, entering in the violins in the third bar, begins to project a 
metrical profile, but one that fits more clearly into 3/2 than 6/4. Only in Bar 
7 is the duple division of the bar firmly supported in all parts: the theme, the 
’motto’, and the harmonic voices move every half bar (Frisch 1990: 156). 

A similar situation occurs in Brahms’ Violin Sonata Op. 78 (notated in 6/4). Figure 
8.10 shows the excerpt from the metric weight of the violin for the beginning of the 
piece. Bars 10–19 again exhibit a metric characteristic that reflects a 3/2 meter, with 
large metric weights on the first, third and fifth quarter notes, while the bars before 
and after this section correspond to a 6/4 meter, with large metric weights on the 
first and fourth quarter notes of the bars. Cohn characterizes these different sections 
as the principal thematic material before Bar 10, followed by a transitional passage 
that is metrically dissonant to the opening bars which is dissolved with the return of 
the main theme in Bar 21. 

The movement opens in the state of metric consonance. A transitional pas-
sage culminates in a dominant prolongation at Bar 16, which leads to a modi-
fied counter-statement of the opening material at Bar 21. The dominant pro-
longation is in a state of double hemiola. In these bars, both violin and piano 
are indirectly dissonant with the opening metric consonance…. The resolu-
tion of the metric dissonance coincides with the return of the tonic and of the 
principal thematic material (Cohn 2001: 305). 

 

Figure 8.10.  Excerpt from metric weight W2,2 of the violin in the first movement of Brahms’ 
Violin Sonata Op. 78. 

Hence, the different types of layer profiles of the metric weight can be used for seg-
menting a piece into different sections, as in this case segmenting the piece between 
the main thematic material and the transition. 

The metric weight of the exposition of the first movement of Brahms’ Second Sym-
phony in 3/4 indicates sections that coincide with tonal segments of the exposition. 
Figures 8.11 to 8.13 display excerpts of three different sections of the weight that 
demonstrate different metric characteristics. In the first section (Figure 8.11) the high-
est metric weights are located on the first beats of the bars. The second section (Fig-
ure 8.12) reveals layers that correspond to a 4/4 meter instead of a 3/4 meter. The 
last section (Figure 8.13) shows little differentiation between the highest layer and 
other layers of the weights of the main quarter notes of the bars. These three sections 
correspond to the three segments of a tonal analysis of this exposition (Phipps 2001). 
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Figure 8.11. Excerpt from metric weight W2,2 of the exposition of the first movement of 
Brahms’ Second Symphony, Bars 1–43. 

 

Figure 8.12. Excerpt from metric weight W2,2 of the exposition of the first movement of 
Brahms’ Second Symphony, Bars 44–117. 

 

Figure 8.13. Excerpt from metric weight W2,2 of the exposition of the first movement of 
Brahms’ Second Symphony, Bars 118–86. 

8.2.5 Determining of Tonally Distinct Segments Using the Spiral Array 
At this point, we digress from metric models to briefly describe the Argus algorithm 
(Chew 2004, 2006b) mentioned earlier, a method for determining segmentation 
boundaries based on tonal contexts. The Argus method represents a recent applica-
tion of the Spiral Array (Chew 2000) to the determining of sections of music with dis-
tinct pitch collections. A different method, based on an optimization approach, was 
proposed in Chew (2002). 

The Spiral Array is a geometric model that represents pitches on a spiral such that 
spatially close pitch representations form higher-level tonal structures such as triads 
and keys. These higher-level structures are, in turn, represented by spirals embedded 
in the interior of the outer pitch-class spiral. The Argus algorithm uses only the out-
ermost pitch-class spiral, but an algorithm for key finding uses the pitch-class and 
the pair of key spirals. A more detailed description of the Spiral Array and compari-
sons of its structure to Krumhansl’s and Lerdahl’s geometric representations of tonal-
ity can be found in the article by Chew in this issue. 
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The pitch-class spiral, shown in Figure 8.14, is a three-dimensional realization of the 
Tonnetz. Unlike the Tonnetz, the Spiral Array summarizes collections of pitches as 
points in its interior, called centers of effect (c.e.’s). By mapping a musical selection to 
its center-of-effect, and conducting a nearest-neighbor search for the closest key rep-
resentation, we can determine the key of the selection. This center-of-effect generator 
(CEG) method has been shown to be a useful technique for key recognition (see 
Chew 2001; also Ch. 4). 

The center-of-effect plays an important role in the Argus algorithm. It has been 
shown to be an effective surrogate for the tonal context (Chew and Chen, 2003). Con-
sider the illustration in Figure 8.14. When comparing pitch collections from two con-
secutive segments of music, the distance between their centers-of-effect quantifies the 
tonal difference between the two musical selections. The magnitude of this distance 
can thus be used as an indicator of the likelihood that a tonal boundary exists be-
tween the two selections. The resulting time series of these computed distances con-
tains numerous peak values. The statistical method from process control is then in-
voked to determine when a peak is significant and worth noting. This method as-
sumes that the distance values can be modeled using a normal distribution. 

 

Figure 8.14. Distance between centers of effect (summary points) inside the Spiral Array 
provides tonal distance between consecutive segments of music. 

The Argus has been applied successfully to musical examples by Schubert and Mac-
Dowell (Chew 2006a), and Messiaen (Chew 2004). We reproduce the chart for one of 
the Messiaen analyses here in Figure 8.15 using equal forward and backward win-
dow sizes of 60 (= f = b) sixteenth notes. The bar at the top of the chart shows the sec-
tions in the piece, as indicated by section headings in the score penned by the com-
poser. The solid horizontal line marks the average distance, μ, while the dotted hori-
zontal lines mark the levels μ+σ and μ+2σ respectively. Note that, in this example, all 
peaks above μ+σ correspond to points at or close to significant section boundaries. 
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The two peaks above μ+2σ correspond to the transition between sections A and C. 
More detailed analyses of the behavior of the distance values time series as the win-
dow gets smaller can be found in Chew (2006b). 

 

Figure 8.15.  Analysis of segmentation boundaries in Messiaen’s Vingt Regards, No. 4, 
using the Argus algorithm with the parameters f = b = 60, μ = 0.7418, σ = 0.5083. 

The results of the analysis of Brahms’ tonally ambiguous Capriccio are given in Sec-
tion 8.3.2. This analysis will provide some evidence for the affinity between tonal and 
metric structures in the piece. 

8.2.6 Determining of Metrically Distinct Segments Using Inner Metric 
Analysis 
In this section, we introduce a two-step process for the determining of metrically dis-
tinct segments. The first part, like the Argus method, uses a distance function (in this 
case, the correlation coefficient) to determine the similarity between consecutive bars 
in the metric profile. The second part isolates and investigates the segments identi-
fied in step one to confirm their metric profiles. 

As shown in Section 8.2.4, the sensitivity of the metric weight is able to indicate sec-
tions that are characterized by different metric layers that correspond to meaningful 
segments of the piece. A possibility for the automatic extraction of these sections is 
the measurement of the similarity of the metric weight of consecutive weight seg-
ments using the correlation function. In this case, the correlation function serves as 
the distance measure for metric similarity between two consecutive windows of time, 
say, one bar. The correlation of the metric weight of two consecutive Bars should be 
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high in stable regions of metric coherence; it should drop to a lower level whenever 
the second bar introduces a different metric characteristic. Other segment sizes (such 
as half bars) could be considered. A change between high and low coefficient values 
indicates a boundary between stable regions of differing weight layers, or between 
stable and unstable regions. 

Figure 8.16 gives an example of correlation coefficient values of the metric weight of 
consecutive bars for the analysis of the violins in Brahms’ Third Symphony (see met-
ric weight in Figure 8.8). The i-th column in Figure 8.16 indicates the correlation coef-
ficient value between the metric weights of Bar i and Bar i+1 of the segment. Since 
the metric weight is defined only on note onsets o, we define the metric weight of all 
silence events s (based on the finest grid of the piece) as zero, and hence obtain for 
each bar the same number of events in the accent profile. Let {xi : i = 1, . . . , n} and {yi : 
i = 1, . . . , n} be the accent profiles of two consecutive bars. We use the following cor-
relation coefficient formula for the measurement of the similarity of the metric char-
acteristics of the two bars: 

r =
xi∑ yi − nxy

(xi
2 − nx)2∑ (yi

2 − ny)2∑
 

The graph of the correlation coefficient values shown in Figure 8.16 reaches high val-
ues in the beginning, drops to a lower level at the pair of consecutive Bars 4 and 5 
and increases again to a higher level beginning with the consecutive Bars 9 and 10. 
The green line marks the threshold μ–σ  of the mean value μ of all correlation coeffi-
cient values and their standard deviation σ . The decrease of the five values under 
this line, beginning at the 4th data point, shows that this decrease is significant (as-
suming that the correlation coefficient values can be approximated by a normal dis-
tribution). For the determination of segment boundaries we will consider values that 
drop under this threshold. 
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Figure 8.16.  Correlation coefficient values between metric weights of consecutive bars for the 
analysis of the violin part (Bars 3–21) of Brahms’ Third Symphony, first movement (Bars 1–
18 of the metric weight). 

Hence, the correlation coefficient values indicate three segments: the first stable seg-
ment with high similarity between metric weights of consecutive bars terminates at 
the end of Bar 4, followed by an unstable region characterized by low similarity be-
tween the metric weights of consecutive Bars, followed by a second stable segment 
starting at Bar 9 with high correlation coefficients. The first stable region is character-
ized by a 3/2 profile; the second stable region has a 6/4 profile (see Figure 8.8). 
Hence, the unstable region between these segments could be interpreted as a transi-
tion between these two states. Figure 8.17 highlights these three segments with dif-
ferent colors. 

 

Figure 8.17.  Segmentation of the metric weight of Brahms’ Third Symphony, first movement 
(Bars 3–21), according to the correlation coefficient values. 

In the second step we analyze the isolated segments in order to test their boundaries 
after excluding the influence from outside the segments. Furthermore we check 
whether the instability (the lack of stable weight layers reflected by low correlation 
coefficient values) of the transitional passage in Bars 5–8 is due to the influence of the 
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surrounding segments of differing metric weight layers. Conflicting layer contexts 
might prevent the emergence of stable weight layers within this passage. Hence, ne-
glecting the relations of the onsets within this passage to the surrounding context 
might lead to stable layers within the isolated analysis. 

a)    b)    c)  

Figure 8.18.  Metric weight of the isolated segments; (a) Bars 1–4, (b) Bars 5–8, and (c) Bars 
9–18. 

The metric weight of the isolated segments in Figure 8.18 confirms the 3/2 character-
istic of the first segment with high metric weights on the first, second and third half 
notes of the bars, and the 6/4 characteristic of the third segment. The transitional 
second passage does not gain stable weight layers within the isolated analysis, hence 
it remains a transitional unstable passage between two stable segments. The spectral 
weights of these isolated segments that yield the predominant metric characteristic of 
each segment in Figure 8.19 confirm these results. While the spectral weight of the 
first segment assigns large weights to the main half notes of a 3/2, the transitional 
passage does not exhibit stable layers. The spectral weight of the last segment con-
firms the 6/4 characteristics. 

a)    b)    c)  

Figure 8.19.  Spectral weight of the isolated segments; (a) Bars 1–4, (b) Bars 5–8, and (c) 
Bars 9–18. 

The correlation coefficient values of the stable first and third segments are above the 
μ–σ  threshold, which indicates that the segments are also metrically stable from the 
inside perspective that neglects the influence of the surrounding contexts. An at-
tempt to enlarge the stable segments by choosing Bars 1–5 (instead of Bars 1–4) as a 
candidate for the first segment, and Bars 8–18 (instead of Bars 9–18) as a candidate 
for the third segment, results in significantly low correlation coefficient values for the 
pair (Bar 4, Bar 5) and the pair (Bar 8, Bar 9). Hence, no readjustments of the segment 
boundaries are necessary within this second step. Bars 1–4 constitute the maximally 
stable first segment, and Bars 9–18 the maximally stable third segment. 
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We apply this segmentation procedure consisting of two steps (apply correlation co-
efficient values of consecutive bars to the metric weight of the entire piece first, then 
investigate the isolated segments as a second step) to Brahms’ Capriccio in section 
8.3.1. 

8.3 Brahms’ Op. 76, No. 8 Revisited 

8.3.1 Metric Analysis 
In this section we describe the metric characteristics of the first 15 bars of the Capric-
cio according to Inner Metric Analysis and segment the piece into metric regions. 

 

Figure 8.20.  Metric weight W2,2 of both hands of Bars 1–15. 

The onsets of the left and right hand parts together perform an almost continuous 
eighth note pattern through the piece with the exception of the first quarter note at 
the very beginning. Hence, the corresponding metric weight in Figure 8.20 reveals a 
differentiation of the metric weight into only two metric layers. The higher layer is 
built upon the six main beats of all bars, the lower layer upon the weak eighth notes 
in between. These layers are stable throughout the entire section of Bars 1–15; no 
segments can be derived from the metric weight of both hands.

 

Figure 8.21.  Metric weight W2,2 of the left hand. 

Analyzing the left and right hand parts separately results in different metric layers. 
Figure 8.21 displays the metric weight W2,2 of the left hand part. The metric weight is 
highest at the 1st and 4th quarter notes of the bars; the weights of the 2nd, 3rd, 5th 
and 6th quarter notes form a second layer. The lowest layer consists of the weights of 
the weak eighth notes in between. Hence, the metric hierarchy associated with a 6/4 
meter is reflected within the inner metric structure of the left hand in the section con-
taining all bars from Bar 1 to the first half of Bar 14. The overall level of all weights 
drops slightly in Bar 6 although the characteristic of a 6/4 is maintained until Bar 14. 
In Bar 15 all weights drop to a very low level. The predominant metric structure in 
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Bars 1–15 according to the spectral weight of the left hand part is that of a 6/4 (see 
Figure 8.22). 

 

Figure 8.22.  Spectral weight SW2,2 of the left hand. 

The observed local changes of the metric weight raise the question of whether the 
correlation coefficient would indicate a segment boundary between Bars 5 and 6, and 
after Bar 14. Figure 8.23 shows the correlation coefficient values for the metric 
weights of consecutive bars of the left hand. The values do not drop under the μ–σ  
threshold at the pair of Bars 5:6, hence the overall decrease of all metric weights to a 
lower level does not indicate a boundary at this point. The correlation coefficient 
values for the pair of Bars 13:14 and the pair of Bars 14:15 are lower than the thresh-
old, and indicate a less stable segment starting in Bar 14 after the stable segment of 
Bars 1–13. 

 

Figure 8.23.  Correlation between metric weights W2,2 of consecutive bars for the analysis of 
the left hand. 

In the second step of our segmentation process we consider the metric weights of the 
isolated segments (Bars 1–13 and Bars 14–15). Figure 8.24 shows that the unstable 
second segment also remains unstable without the influence of the first stable seg-
ment. 
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Figure 8.24.  Metric weights W2,2 of the isolated segments Bars 1–13 (left) and Bars 14–15 
(right). 

The test whether a more stable second segment can be obtained by a slight change of 
the boundary (the enlargement of the second segment by one bar) does not result in 
stable weight layers for the segment candidate of Bars 13–15 (see Figure 8.25), even 
though the beginning is characterized by alternating high and low weights. The cor-
relation coefficient values of consecutive bars remain low (0.48 and 0.32). Hence, a 
readjustment of the boundaries within the second step of the isolated analyses of the 
segments is not necessary. The left hand part of Bars 1–15 of the Capriccio is there-
fore divided into two segments; the stable first segment of Bars 1–13 with its weight 
layers corresponding to a 6/4 pattern, and the unstable second segment of low corre-
lation coefficient values of Bars 14–15. This very short segment corresponds to the re-
gion of metric modulation according to Lewin’s analysis of the left hand. 

 

Figure 8.25.  Metric weights W2,2 of Bars 13–15. 

The predominant inner metric structure of the right hand according to the spectral 
weight in Figure 8.26 is characterized by a highest layer of the weights of the 2nd, 6th 
and 10th eighth notes of the bars. These three peaks indicate a characteristic shifted 
3/2 pattern, instead of a 6/4 pattern as observed in the analysis of the left hand. The 
shift is due to the many syncopations in the right hand. 

 

Figure 8.26.  Spectral weight SW2,2 of the right hand. 
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Figure 8.27.  Metric weight W2,2 of the right hand. 

The metric weight in Figure 8.27 demonstrates that this predominant metric pattern 
is not present in all bars of this section, according to a more local perspective on the 
inner metric structure. Starting in Bar 12 these peaks disappear. The corresponding 
correlation coefficient values in Figure 8.28 show a drop under the μ–σ  threshold 
starting at the pair of Bars 11:12, with one value above the threshold at the pair of 
Bars 13:14. According to these values we could conclude that there are four seg-
ments: the very stable first segment with a high similarity between consecutive bars 
consisting of Bars 1–11, the second segment consisting of Bar 12 only, the third seg-
ment of Bars 13–14 as a relatively stable segment of higher correlation coefficient val-
ues, and the fourth segment consisting of Bar 15. 

 

Figure 8.28.  Correlation between metric weights W2,2 of consecutive bars for the analysis of 
the right hand part of Bars 1–15. 

Figure 8.29 shows the isolated analyses of these segments. Peaks at the 2nd, 6th and 
10th eighth notes in the entire segment characterize the stable section—the first seg-
ment (from Bar 1 to Bar 11) of high correlation coefficient values. The general level of 
the weights drops in the last three bars to a slightly lower level. The second segment 
of Bar 12 is characterized by four peaks: at the 2nd, 5th, 8th and 11th eighth notes. 
The third segment of Bars 13–14 is stable only in Bar 14, characterized by two weight 
layers of alternating high and low values, and having a low correlation coefficient 
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value (r=0.68). The last segment of Bar 15 shows large metric weights on the 2nd, 4th 
and 6th quarter notes. However, the low correlation coefficient value of the isolated 
third segment, which resulted in three short segments in the last section of Figure 
8.28, is not satisfactory. The correlation coefficient values of Bars 13:14 within the 
analysis of the entire piece were above the μ–σ  threshold, indicating a high degree of 
similarity between these two bars. A high similarity is not replicated in the isolated 
analysis of these bars. Furthermore, a result having three consecutive very short 
segments of only one or two bars each is not a very intuitive one. 

a)    b)    c)    d)  

Figure 8.29.  (a) Metric weight W2,2 of Bars 1–11, (b) Bar 12 , and (c) Bars 13–14, and (d) 
Bar 15. 

Therefore, even though the correlation coefficient of the pair of Bars 13:14 is slightly 
above the threshold with respect to the analysis of the entire piece, we construct from 
the last three short segments one greater segment consisting of Bars 12–15. Hence we 
obtain two segment candidates of Bars 1–11 and Bars 12–15. The corresponding iso-
lated analyses of these two segments are shown in Figure 8.30. 

The isolated analyses of the two segment candidates shown in Figure 8.30 reveal, for 
the second segment, no stable weight layers. The correlation values of these consecu-
tive bars are very low: 0.54, 0.65 and –0.14. We test now, in the second step, whether 
the enlargement of the second segment of the right hand would result in a more sta-
ble segment. 

           

Figure 8.30.  Left: Metric weight W2,2 of first segment candidate (Bars 1–11). Right: Metric 
weight W2,2 of second segment candidate (Bars 12–15). 

Shifting the boundary by one bar to the left results in a metric weight pattern for Bars 
11–15 (see Figure 8.31) that is characterized by peaks on the 2nd, 5th, 8th, and 11th 
eighth notes in Bars 11, 12, and the first half of Bar 13. Hence, the enlargement of the 
second segment might result in greater stability characterized by layers in the metric 
weight. 
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Figure 8.31.  Extension of the second segment candidate by one bar: the segment candidate of 
Bars 11–15. 

In order to obtain a stable-as-possible second segment we shift the beginning of this 
segment candidate increasingly further to the left. Figure 8.32 shows, from top to bot-
tom, the process of shifting the beginning by one Bar to the left. We thus incremen-
tally add to the segment candidate Bars 11–15 the segment candidates Bars 10–15, 
Bars 9–15, Bars 8–15, and Bars 7–15. 

Starting with the first extended segment of Bars 11–15, we obtain regions within 
these new segment candidates that are characterized by peaks of the metric weights 
at the 2nd, 5th, 8th, and 11th eighth notes. Furthermore, the metric weights of the last 
two segment candidates (Bars 8–15, Bars 7–15) in Figure 8.32 demonstrate that shift-
ing the second segment beyond Bar 9 results in a drastic decrease of the metric 
weights before Bar 9. In the last segment candidate in Figure 8.32, consisting of Bars 
7–15, the characteristic high metric weights on the 2nd, 5th, 8th, and 11th eighth 
notes are also weakened after Bar 9. Furthermore, Bar 7 again reveals three peaks at 
the 2nd, 6th, and 10th eighth notes, as observed in the first segment of Bars 1–11. This 
suggests that the most stable second segment out of these candidates can be obtained 
by choosing Bars 9–15. 

In order to test this assumption with the correlation coefficient values, we display the 
corresponding values of metric weights of consecutive bars for all segment candi-
dates in Figure 8.33 from left to right. While none of the correlation coefficients of the 
original segment candidate Bars 12–15 reaches the value of 0.7, the greatest correla-
tion coefficient value of segment candidate Bars 11–15 is already higher than 0.8 at 
the first data point. The next segment candidate, Bars 10–15, contains two correlation 
coefficient values above 0.8. The segment candidate Bars 9–15 contains three values 
above 0.8. In all cases these highest values are located at the beginning of the seg-
ment, while the last three values for each segment remain low. In contrast to this, the 
segment candidate of Bars 8–15 starts with a lower value of 0.5 before the correlation 
coefficient values increase; the last segment candidate, Bars 7–15, starts with two low 
values. While the correlation coefficient values did increase in the beginning of all 
segment candidates—Bars 11–15, Bars 10–15, and Bars 9–15—the extension beyond 
Bar 9 results again in a decrease of the correlation coefficient values of the beginnings 
of the segment candidates. This confirms that the beginning of the second segment of 
the piece should be located at the boundary between Bar 8 and Bar 9. However, the 



 

 
   TONAL THEORY FOR THE DIGITAL AGE 
 
162 

correlation coefficient values of the very last Bars in each segment candidate could 
not be increased. 

 

 

 

 

 

 

 

Figure 8.32. Extending the second segment candidate of Bars 12–15 by shifting the 
beginning backwards: metric weights W2,2 of Bars 10–15, Bars 9–15, Bars 8–15, Bars 7–15 
(from top to bottom). 
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Figure 8.33.  Correlation between weights of consecutive bars of the metric weights W2,2 of 
Bars 12–15, Bars 11–15, Bars 10–15, Bars 9–15, Bars 8–15, Bars 7–15 (from left to right).  

Hence, even after choosing Bars 9–15 as the best second segment, this segment still 
contains an unstable region, namely the last two and a half bars, that is not character-
ized by peaks on the 2nd, 5th, 8th, and 11th eighth notes, as in the first part of this 
segment. This corresponds on the one hand to the unstable last two bars in the metric 
weight of the left hand part, and on the other to Lewin’s assignment of a metric 
modulation within these bars. The very first segment candidate of Bars 12–15 ob-
tained within the first step of our segmentation process was not characterized by sta-
ble weight layers. In contrast, the metric weights of Bars 12 and 13 within the seg-
ment of 9–15 are now characterized by the same metric weight layers as Bars 9–11, 
and are part of a stable metric region. 

     

Figure 8.34.  Metric weights W2,2 of the final segments (Bars 1–8, Bars 9–15). 
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The comparison of the final segments of Bars 1–8 as the first, and Bars 9–15 as the 
second segment in Figure 8.34 shows two different metric weight characteristics. The 
first segment is, in all bars, characterized by peaks on the 2nd, 6th, and 10th eighth 
notes, while the second segment is characterized by peaks on the 2nd, 5th, 8th, and 
11th eighth notes in the first five and a half bars. Hence, the first segment suggests a 
correspondence to a shifted 3/2 meter, while the second suggests a correspondence 
to a shifted 12/8 meter. The spectral weights in Figure 8.35 confirm that these are in-
deed the predominant characteristics of these segments. 

       

Figure 8.35.  Spectral weights SW2,2 of the final segments (Bars 1–8, Bars 9–15). 

Applying Inner Metric Analysis to the first 15 bars of Brahms’ Capriccio leads to the 
results for which a graphical representation is given in Figure 8.36.  In summary, the 
analysis of both hand parts does not result in a segmentation of Bars 1–15 of the Ca-
priccio. The left hand part is characterized by weight layers corresponding to a 6/4 
meter in the first segment (Bars 1–13) and a transitional unstable segment (Bars 14–
15). The right hand is divided into the stable segment of Bars 1–8, characterized by 
weight layers corresponding to a shifted 3/2 meter, and a second segment (Bars 9–
15), characterized by weight layers corresponding to a 12/8 meter, which contains a 
transitional unstable region in Bars 14–15. 

8.3.2 Tonal Analysis 
In this section, we present the analysis of Brahms’ Capriccio using the Argus method 
as outlined in Section 8.2.5. The score was encoded as a text file such that, for each 
eighth-note interval, the names of all active pitches are known. The text file was then 
given as input to the Argus program. The forward and backward windows are set to 
the same size, f = b = 12 eighth notes, that is to say, one bar. 
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Figure 8.36.  Bars 1–15 of Brahms’ Capriccio with metric analyses superimposed on score. 
The blue region [right hand, Bars 1-8] indicates a 3/2 meter, the green region [right hand, 
Bars 9-13] indicates a 12/8 meter, the red region [left hand, Bars 1-13] indicates a 6/4 meter. 
The lighter green and red regions [both hands, Bars 14-15] indicate metric modulation areas. 
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Figure 8.37.  Plot of center-of-effect (c.e.)  distance values over time [f = 12, b = 12, μ = 
0.1987, σ = 0.1304]. 

At each point in time, all the pitches in the forward window are mapped to their cor-
responding representations in the Spiral Array, and the program computes the posi-
tion of the center-of-effect of these pitches, a sum of the pitch positions weighted by 
the relative durations. The same is done in the backward window. The program then 
calculates the distance between the two centers-of-effect. Figure 8.37 shows the graph 
of these c.e. distances over time (counted in eighth notes) for the entire piece (includ-
ing repeats). 

The extremely high peak in the middle of the piece occurs at the point where the 
composer spells the pitches with their enharmonic equivalents, marking a climax of 
the piece. The highlighted section on the left part of each chart corresponds to Bars 1–
15 of the Capriccio, the focus of this paper. The horizontal line marks the level of μ+σ 
on the chart. Peaks in the highlighted region that are above μ+σ are delineated by 
solid vertical lines. Peaks below but close to the threshold are delineated by dotted 
vertical lines. 

Figure 8.38 shows the score with the boundaries for tonal change corresponding to 
those identified in Figure 8.37 marked with similar vertical lines. Consider the three 
boundaries resulting from this analysis—segment one is from the pickup into Bar 1 
through 5/6 of the second bar, segment two is from the sixth quarter of Bar 2 
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through the end of Bar 7, the third segment ends just before Bar 15, and the final 
segment is a short one, consisting only of Bar 15. 

The Capriccio is written in the key of C, yet never tonicizes in the key throughout the 
entire first section of the piece. The first boundary divides the initial nebulously C-
major region from the equally non-committal F (IV of C) region. Crossing the second 
boundary leads to an E minor (vii of F, also the relative minor of G) region, and the 
final boundary leads back to the C region via F. 

 

Figure 8.38.  Bars 1–15 of Brahms’ Capriccio with tonal analyses superimposed on score. 



 

 
   TONAL THEORY FOR THE DIGITAL AGE 
 
168 

8.3.3 Comparison 
We now compare the metric and tonal analyses with each other, and with Lewin’s 
results. Taking into account that the sections for the tonal analysis often include the 
preparatory bar prior to a new section, our tonal and metric analyses appear to agree 
in the second and third boundaries. The second tonal boundary occurs one bar before 
the corresponding metric boundary. The one-bar difference is due to the fact that the 
chord in Bar 8, B seventh, serves a dominant function leading to the upcoming region 
in e minor, which is termed the dominant-substitute key region in Lewin’s analysis. 
As a result, the Argus program groups Bar 8 with the e minor segment. 

The first tonal boundary, according to the Spiral Array, has no correspondence in the 
Inner Metric Analysis segmentation, but has a parallel in Lewin’s analysis. In Lewin’s 
analysis, the end of the second bar marks the transition between the “tonic” and 
“subdominant” regions. The Argus result is two eighth notes off from Lewin’s. Ar-
gus is unaware of bar lines and sequence (and hence melodic pattern) information, 
and groups the preparatory upbeat into Bar 3 with the second segment. 

Inner Metric Analysis is based on equidistant notes’ attacks and does not consider 
pitch information. Lewin’s and Cohn’s analyses of the Capriccio, on the other hand, 
are explicitly based on pitch information. Surprisingly, the right hand exhibits a 3/2 
metric state within Bars 1–8 in the Inner Metric Analysis results, which include the 
section of Bars 3–4 labeled by Lewin as 3/2 for the left hand. Furthermore, the right 
hand is grouped as 12/8 in Bars 9–13 in accordance with Lewin’s findings for the left 
hand. Hence, metric states of the left hand assigned on the basis of pitch information 
correspond with metric states of the right hand assigned on the basis of time infor-
mation. 

Lewin segments the piece into the “antecedent” section, Bars 1–8 governed by toni-
cized F harmonies, and the “consequent” section, comprising Bars 9–15 governed by 
tonicized e harmonies. Inner Metric Analysis splits the example into the first and 
second half, agreeing with Lewin’s main sections. The tonal analysis using the Spiral 
Array gives the division between Lewin’s “tonic” and “subdominant” regions in the 
antecedent section, and between the “tonic” and “dominant” regions between the an-
tecedent and consequent sections. 

Bars 14–15 contain a metric modulation, according to Lewin. The metric model also 
shows a modulation from 12/8 back to 3/2 in the right hand and a transitional re-
gion in the left hand; the Spiral Array analysis shows a boundary from e minor to F, 
leading back to the tonic, C. We have shown similarities in the results for corre-
sponding sections of the mathematical models for metric and tonal domains with 
Lewin’s and Cohn’s findings, thus providing further evidence for the affinity be-
tween tonal and metric structures in Brahms’ Op. 76, No. 8. 
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8.4 Conclusions 
We have presented independent methods for meter and tonal induction through the 
Inner Metric Analysis and Spiral Array models respectively. We then introduced the 
Argus method for tracking tonal change over time, and a corresponding method for 
determining metric change over time. In the metric realm, we put forth a sensitivity 
analysis technique for testing the stability of a segmentation result. The methods 
were illustrated by numerous examples from various composers. In particular, we 
applied these methods to Brahms’ Capriccio to independently segment the example 
into metrically stable and tonally stable sections. The comparison of the computa-
tional results of these models supports what Lewin and Cohn have found: there is a 
close relationship between harmony and meter in Brahms’ Op.76, No.8. 
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